Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atmospheric scientists release first "bottom-up" estimates of China's CO2 emissions

06.07.2012
Estimates capitalize on instrumental measurements of CO2 in smokestacks and pollutants in the air by satellites and surface stations
Atmospheric scientists at the Harvard School of Engineering and Applied Sciences (SEAS) and Nanjing University have produced the first "bottom-up" estimates of China's carbon dioxide (CO2) emissions, for 2005 to 2009, and the first statistically rigorous estimates of the uncertainties surrounding China's CO2 emissions.

The independent estimates, rooted in part in measurements of pollutants both at the sources and in the air, may be the most accurate totals to date. The resulting figures offer an unbiased basis on which China might measure its progress toward its well-publicized CO2 control goals.

The findings were published July 4 in the journal Atmospheric Environment.

"China's emissions of CO2 are of central concern in efforts to combat global climate change," says lead author Yu Zhao, a former postdoctoral researcher at Harvard SEAS who is now a professor at the Nanjing University School of Environment in China. "But despite all of the attention to China's CO2 emissions, they're less well quantified than most people realize."

Existing estimates for these emissions are calculated "top-down," based on annual energy statistics that are released by the Chinese government. The nation has only once officially estimated its CO2 emissions, based on national energy statistics from 1994, although it is now constructing a data system to produce periodic national greenhouse gas inventories. Non-Chinese organizations, such as the U.S. Department of Energy and the Netherlands Environment Agency, produce widely cited CO2 estimates for China (among other countries), but these are also based on the national energy data.

A study published last month by a China–U.K.–U.S. team in Nature Climate Change spotlighted a large disparity in estimates of Chinese CO2 emissions when the numbers were based on national energy statistics versus summed provincial data. To illustrate the contrast, those researchers had applied a standardized U.N. protocol for estimating the emissions of any developing country by sector.

The new Harvard–Nanjing study goes deeper, however, constructing a "bottom-up" emission inventory that is specific to China's energy and technology mix. It combines the results of Chinese field studies of CO2 emissions from diverse combustion processes with a plant-by-plant data set for power generation, independent research on transportation and rural biomass use, and provincial-level energy statistics for the remaining sectors.

The Harvard-Nanjing team believes provincial energy data to be more accurate than national statistics because the provincial data have been empirically tested in peer-reviewed atmospheric studies that compare the expected emissions of conventional air pollutants to actual instrumental observations by satellites and ground stations. Provincial statistics also take into account the large quantities of coal produced by small, illegal mines.

"There are several different ways to estimate emissions of greenhouse gases or air pollutants, from those designed to support policy processes to those made by scientists researching atmospheric transport and chemistry," explains co-author Chris Nielsen, Executive Director of the Harvard China Project, which is based at SEAS.

The former methods suit the needs of policy, attributing emissions to identifiable sources for actionable controls, but the latter are often more environmentally accurate, according to Nielsen.

"The methods used by atmospheric scientists can be more complete, incorporating new research on dispersed sources that are poorly represented in official statistics or weakly targeted by policy—such as the burning of crop wastes in fields or biofuels in poor, rural homes," Nielsen explains. "The data are also more detailed in spatial terms. This allows a comparison of emission estimates to the pollution levels measured at the surface, or from space, testing the underlying energy data in the process."

The new study capitalizes on prior tests and a bottom-up data framework that has been demonstrated for conventional air pollutants to produce a more thorough estimate of China's CO2 emissions.

The new study also quantifies the uncertainty of the emission totals, applying formal statistical methods. For instance, the team found that the 95% confidence interval for the 2005 CO2 estimate lies between −9% and +11% of the central value. This relatively wide range means that measuring China's achievement of its national CO2 control targets may be more difficult—and potentially more contentious—than generally recognized by Chinese and international policy actors.

"The levels of uncertainty indicate that Chinese domestic frameworks to set control targets for CO2 emissions at scales larger than individual factories, such as provinces or sectors, may reflect unwarranted confidence in the measurability and verifiability of the impacts of policy interventions," says senior author Michael B. McElroy, Gilbert Butler Professor of Environmental Studies at SEAS.

"Such levels of uncertainty aren't unique to China among developing and emerging economies," Zhao cautions. "All have less-developed data systems than those that have been built up over decades to serve energy markets and environmental regulation in the United States and other industrialized countries. It's critical that international agreements to limit CO2 emissions recognize these differences in national data conditions."

Beyond the policy implications, the availability of accurate estimates of China's CO2 emissions (and the related uncertainties in the data) can improve scientists' understanding of the global carbon cycle and the physical processes driving global climate change.

The work was funded by the National Science Foundation.

Caroline Perry | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>