Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atmospheric mysteries unraveling

30.06.2015

New findings may be key to explaining mercury -- and much more

It's been difficult to explain patterns of toxic mercury in some parts of the world, such as why there's so much of the toxin deposited into ecosystems from the air in the southeastern United States, even upwind of usual sources.


The Differential Optical Absorption Spectroscopy instrument hangs under the wing of a research aircraft. Relying on measurements from the instrument, CIRES Fellow Rainer Volkamer and international colleagues report that halogens, natural chemicals from the ocean, can contribute to much more vigorous atmospheric chemistry than previously understood. The discovery may help explain levels of mercury contamination in the air, on land and in the oceans, and some climate mysteries as well. More: cires.colorado.edu/news/press/halogenchem

Credit: David Oonk/CIRES

A new analysis led by researchers at the University of Colorado Boulder shows that one key to understanding mercury's strange behavior may be the unexpected reactivity of naturally occurring halogen compounds from the ocean.

"Atmospheric chemistry involving bromine and iodine is turning out to be much more vigorous than we expected," said CU-Boulder atmospheric chemist Rainer Volkamer, the corresponding author of the new paper published in the Proceedings of the National Academy of Sciences. "These halogen reactions can turn mercury into a form that can rain out of the air onto the ground or into oceans" up to 3.5 times faster than previously estimated, he said.

The new chemistry that Volkamer and his colleagues have uncovered, with the help of an innovative instrument developed at CU-Boulder, may also help scientists better understand a longstanding limitation of global climate models. Those models have difficulty explaining why levels of ozone, a greenhouse gas, were so low before the Industrial Revolution.

"The models have been largely untested for halogen chemistry because we didn't have measurements in the tropical free troposphere before," Volkamer said. "The naturally occurring halogen chemistry can help explain that low ozone because more abundant halogens destroy ozone faster than had previously been realized."

Volkamer is a Fellow of CIRES, the Cooperative Institute for Research in Environmental Sciences, at CU-Boulder and is an associate professor in the Department of Chemistry and Biochemistry. For the new paper, he worked with scientists from the U.S., China, Denmark and England.

The international team relied on a differential optical absorption spectroscopy instruments (DOAS) that Volkamer's research group built to measure tiny amounts of atmospheric chemicals including highly reactive bromine oxide and iodine oxide radicals.

Those radicals are very short-lived in the air, and collecting air samples doesn't work well. DOAS uses solar light, measuring the scattering and absorption of sunlight by gases and particles to identify the chemicals' distinct spectroscopic fingerprints and to quantify extremely small amounts directly in the atmosphere.

Reactions involving those bromine and iodine radicals can turn airborne mercury--emitted by power plants and other sources--into a water-soluble form that can stay high in the atmosphere for a long time. High in the air, the mercury can sweep around the world.

Towering thunderstorms can then pull some of that mercury back out of the atmosphere to the ground, lakes or oceans. There, the toxin can accumulate in fish, creating a public health concern.

Volkamer's team's measurements show that the first step in that process, the oxidation of mercury in the atmosphere by bromine, happens up to 3.5 times faster than previously estimated because of halogen sources in oceans. Their work may help explain a mystery:

For many pollutants, thunderstorms can rain out the chemicals quickly, so by the end of the storm there's little left in the air. Not so for mercury. Volkamer said its concentration in rainwater remains constant throughout a storm.

"To some extent, because of these halogens, we have a larger pool of oxidized mercury up there," Volkamer said.

Naturally occurring bromine in air aloft illustrates the global interconnectedness between energy choices affecting mercury emissions in developing nations, and mercury deposition in the U.S.

Finally, the measurements will be helpful for climate modelers seeking to improve their understanding of halogen impacts on ozone and other greenhouse gases.

###

The 24 authors of "Active and widespread halogen chemistry in the tropical and subtropical free troposphere" published in the current issue of the Proceedings of the National Academy of Sciences (PNAS) are from CU-Boulder and CIRES, NOAA, Harvard University, the University of Copenhagen, the National Center for Atmospheric Research, and more. The work was funded primarily by the National Science Foundation.

CIRES is a partnership of NOAA and the University of Colorado Boulder.

Katy Human | EurekAlert!

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>