Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atmospheric mysteries unraveling

30.06.2015

New findings may be key to explaining mercury -- and much more

It's been difficult to explain patterns of toxic mercury in some parts of the world, such as why there's so much of the toxin deposited into ecosystems from the air in the southeastern United States, even upwind of usual sources.


The Differential Optical Absorption Spectroscopy instrument hangs under the wing of a research aircraft. Relying on measurements from the instrument, CIRES Fellow Rainer Volkamer and international colleagues report that halogens, natural chemicals from the ocean, can contribute to much more vigorous atmospheric chemistry than previously understood. The discovery may help explain levels of mercury contamination in the air, on land and in the oceans, and some climate mysteries as well. More: cires.colorado.edu/news/press/halogenchem

Credit: David Oonk/CIRES

A new analysis led by researchers at the University of Colorado Boulder shows that one key to understanding mercury's strange behavior may be the unexpected reactivity of naturally occurring halogen compounds from the ocean.

"Atmospheric chemistry involving bromine and iodine is turning out to be much more vigorous than we expected," said CU-Boulder atmospheric chemist Rainer Volkamer, the corresponding author of the new paper published in the Proceedings of the National Academy of Sciences. "These halogen reactions can turn mercury into a form that can rain out of the air onto the ground or into oceans" up to 3.5 times faster than previously estimated, he said.

The new chemistry that Volkamer and his colleagues have uncovered, with the help of an innovative instrument developed at CU-Boulder, may also help scientists better understand a longstanding limitation of global climate models. Those models have difficulty explaining why levels of ozone, a greenhouse gas, were so low before the Industrial Revolution.

"The models have been largely untested for halogen chemistry because we didn't have measurements in the tropical free troposphere before," Volkamer said. "The naturally occurring halogen chemistry can help explain that low ozone because more abundant halogens destroy ozone faster than had previously been realized."

Volkamer is a Fellow of CIRES, the Cooperative Institute for Research in Environmental Sciences, at CU-Boulder and is an associate professor in the Department of Chemistry and Biochemistry. For the new paper, he worked with scientists from the U.S., China, Denmark and England.

The international team relied on a differential optical absorption spectroscopy instruments (DOAS) that Volkamer's research group built to measure tiny amounts of atmospheric chemicals including highly reactive bromine oxide and iodine oxide radicals.

Those radicals are very short-lived in the air, and collecting air samples doesn't work well. DOAS uses solar light, measuring the scattering and absorption of sunlight by gases and particles to identify the chemicals' distinct spectroscopic fingerprints and to quantify extremely small amounts directly in the atmosphere.

Reactions involving those bromine and iodine radicals can turn airborne mercury--emitted by power plants and other sources--into a water-soluble form that can stay high in the atmosphere for a long time. High in the air, the mercury can sweep around the world.

Towering thunderstorms can then pull some of that mercury back out of the atmosphere to the ground, lakes or oceans. There, the toxin can accumulate in fish, creating a public health concern.

Volkamer's team's measurements show that the first step in that process, the oxidation of mercury in the atmosphere by bromine, happens up to 3.5 times faster than previously estimated because of halogen sources in oceans. Their work may help explain a mystery:

For many pollutants, thunderstorms can rain out the chemicals quickly, so by the end of the storm there's little left in the air. Not so for mercury. Volkamer said its concentration in rainwater remains constant throughout a storm.

"To some extent, because of these halogens, we have a larger pool of oxidized mercury up there," Volkamer said.

Naturally occurring bromine in air aloft illustrates the global interconnectedness between energy choices affecting mercury emissions in developing nations, and mercury deposition in the U.S.

Finally, the measurements will be helpful for climate modelers seeking to improve their understanding of halogen impacts on ozone and other greenhouse gases.

###

The 24 authors of "Active and widespread halogen chemistry in the tropical and subtropical free troposphere" published in the current issue of the Proceedings of the National Academy of Sciences (PNAS) are from CU-Boulder and CIRES, NOAA, Harvard University, the University of Copenhagen, the National Center for Atmospheric Research, and more. The work was funded primarily by the National Science Foundation.

CIRES is a partnership of NOAA and the University of Colorado Boulder.

Katy Human | EurekAlert!

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>