Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atlas Mountains in Morocco are buoyed up by superhot rock, study finds

02.01.2014
The Atlas Mountains defy the standard model for mountain structure in which high topography must have deep roots for support, according to a new study from Earth scientists at USC.

In a new model, the researchers show that the mountains are floating on a layer of hot molten rock that flows beneath the region's lithosphere, perhaps all the way from the volcanic Canary Islands, just offshore northwestern Africa.


This is a profile depicting the height and depth of the Atlas Mountains. The blue bars indicate the boundary between the crust and the superhot rock below, about 15 km shallower than predicted by previous models.

Credit: Figure 2 from the Geology paper, courtesy of Meghan Miller and Thorsten Becker

"Our findings confirm that mountain structures and their formation are far more complex than previously believed," said lead author Meghan Miller, assistant professor of Earth sciences at the USC Dornsife College of Letters, Arts and Sciences.

The study, coauthored by Thorsten Becker, professor of Earth sciences at USC Dornsife, was published by Geology on Jan. 1, 2014 and highlighted by Nature Geoscience.

A well-established model for the Earth's lithosphere suggests that the height of the Earth's crust must be supported by a commensurate depth, much like how a tall iceberg doesn't simply float on the surface of the water but instead rests on a large submerged mass of ice. This property is known as "istostacy."

"The Atlas Mountains are at present out of balance, likely due to a confluence of existing lithospheric strength anomalies and deep mantle dynamics," Becker said.

Miller and Becker used seismometers to measure the thickness of the lithosphere – that is, the Earth's rigid outermost layer – beneath the Altas Mountains in Morocco. By analyzing 67 distant seismic events with 15 seismometers, the team was able to use the Earth's vibrations to "see" into the deep subsurface.

They found that the crust beneath the Atlas Mountains, which rise to an elevation of more than 4,000 meters, reaches a depth of only about 35 km – about 15 km shy of what the traditional model predicts.

"This study shows that deformation can be observed through the entire lithosphere and contributes to mountain building even far away from plate boundaries" Miller said.

Miller's lab is currently conducting further research into the timing and effects of the mountain building on other geological processes.

This research was funded by the National Science Foundation, grant EAR-0809023.

Robert Perkins | EurekAlert!
Further information:
http://www.usc.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>