Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atlantic 'conveyor belt' not slowing, new study finds

29.03.2010
New measurements of the Atlantic Meridional Overturning Circulation, part of the global ocean conveyor belt that helps regulate climate around the North Atlantic, show no significant slowing over the past 15 years.

The data suggest the circulation may have even sped up slightly in the recent past.

The findings are the result of a new monitoring technique, developed by oceanographer Josh Willis of NASA's Jet Propulsion Laboratory in Pasadena, Calif., using measurements from ocean-observing satellites and profiling floats.

The findings are published today in Geophysical Research Letters, a journal of the American Geophysical Union (AGU).

The Atlantic overturning circulation is a system of currents, including the Gulf Stream, that bring warm surface waters from the tropics northward into the North Atlantic. There, in the seas surrounding Greenland, the water cools, sinks to great depths and changes direction. What was once warm surface water heading north turns into cold deep water going south. This overturning is one part of the vast conveyor belt of ocean currents that move heat around the globe.

Without the heat carried by this circulation system, the climate around the North Atlantic -- in Europe, North America and North Africa -- would likely be much colder. Scientists hypothesize that rapid cooling 12,000 years ago at the end of the last ice age was triggered when freshwater from melting glaciers altered the ocean's salinity and slowed the overturning rate. That reduced the amount of heat carried northward as a result.

Until recently, the only direct measurements of the circulation's strength have been from ship-based surveys and a set of moorings anchored to the ocean floor in the mid-latitudes. Willis' new technique is based on data from NASA satellite altimeters, which measure changes in the height of the sea surface, as well as data from Argo profiling floats. The international Argo array, supported in part by the National Oceanic and Atmospheric Administration, includes approximately 3,000 robotic floats that measure temperature, salinity and velocity across the world's ocean.

With this new technique, Willis was able to calculate changes in the northward- flowing part of the circulation at about 41 degrees latitude, roughly between New York and northern Portugal. Combining satellite and float measurements, he finds no change in the strength of the circulation overturning from 2002 to 2009.

Looking further back with satellite altimeter data alone before the float data were available, Willis finds evidence that the circulation had sped up about 20 percent from 1993 to 2009. This is the longest direct record of variability in the Atlantic overturning to date and the only one at high latitudes.

The latest climate models predict the overturning circulation will slow down as greenhouse gases warm the planet and melting ice adds freshwater to the ocean.

"Warm, freshwater is lighter and sinks less readily than cold, salty water," Willis explains.

For now, however, there are no signs of a slowdown in the circulation. "The changes we're seeing in overturning strength are probably part of a natural cycle," says Willis. "The slight increase in overturning since 1993 coincides with a decades-long natural pattern of Atlantic heating and cooling."

If or when the overturning circulation slows, the results are unlikely to be dramatic. "No one is predicting another ice age as a result of changes in the Atlantic overturning," says Willis. "Even if the overturning was the Godzilla of climate 12,000 years ago, the climate was much colder then. Models of today's warmer conditions suggest that a slowdown would have a much smaller impact now.

"But the Atlantic overturning circulation is still an important player in today's climate," Willis adds. "Some have suggested cyclic changes in the overturning may be warming and cooling the whole North Atlantic over the course of several decades and affecting rainfall patterns across the United States and Africa, and even the number of hurricanes in the Atlantic."

With their ability to observe the Atlantic overturning at high latitudes, Willis says, satellite altimeters and the Argo array are an important complement to the mooring and ship-based measurements currently being used to monitor the overturning at lower latitudes. "Nobody imagined that this large-scale circulation could be captured by these global observing systems," says Willis. "Their amazing precision allows us to detect subtle changes in the ocean that could have big impacts on climate."

Images:
To download a high-resolution, color illustration depicting the overturning circulation of the global oceans, please go to:

http://www.nasa.gov/topics/earth/features/atlantic20100325.html

Title:
"Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning?"
Authors:
Josh K. Willis: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA.
Contact information for authors:
Josh Willis, Tel. +1 (818) 354-0881, Email: joshua.k.willis@jpl.nasa.gov
AGU Contact:
Peter Weiss
+1 (202) 777-7507
pweiss@agu.org
NASA Contact:
Alan Buis
Jet Propulsion Laboratory
+1 (818) 354-0474
Alan.buis@jpl.nasa.gov

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org
http://www.nasa.gov

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>