Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asymmetric continental margins and the slow birth of an ocean

06.06.2014

When South America split from Africa 150 to 120 million years ago, the South Atlantic formed and separated Brazil from Angola.

The continental margins formed through this separation are surprisingly different. Along offshore Angola 200 km wide, very thin slivers of continental crust have been detected, whereas the Brazilian counterpart margin features an abrupt transition between continental and oceanic crust.


"A newborn ocean. Only few tenths of kilometres separate the massive rift shoulders of the Sinai-Peninsula from the African continent on the far side of the Gulf of Suez. 130 Million years ago, the young South Atlantic ocean has likely looked similar (Image: Christian Heine, University of Sydney, under Creative Commons)"


"Asymmetry of the South Atlantic continental margins. Shown is a model cross section for the South Atlantic, shortly after the separation of Africa and South America 120 million years ago. (Image: Sascha Brune, German Research Centre for Geosciences GFZ)"

For decades, geoscientists have struggled to explain not only why the amount of thinning and the geometries of opposite rifted continental margin are not symmetric, but also why wide margins are often underlain by highly thinned continental crust.

Now geoscientists from the German Research Centre for Geosciences (GFZ), the University of Sydney and the University of London have found an explanation, published in the current issue of 'Nature Communications'. Using high-resolution computer models and geological data from the South Atlantic margins, they discovered that the centre of the rift, where the continental crust gets actively thinned through faulting, does not stay fixed during continental break-up, but migrates laterally.

"We could show that rifts are capable of moving sideways over hundreds of kilometres", says Dr Sascha Brune of the GFZ. "During rift migration, the crust on one side of the rift is weakened by hot upwelling material in Earth's mantle, whereas the other side is slightly stronger as the crust there is colder.

New faults form only on the warm, weak rift side, while those of the strong side become inactive." This leads to a sideways motion of the rift system, which is equivalent with conveying crustal material from the South American plate to the African plate. These transferred crustal blocks are strongly extended by the rift and finally constitute the enigmatic thin crustal slivers of the African margin.

Such a relocation of a rift takes its time: during the formation of the present-day Angolan and Brazilian margins, the rift centre migrated more than 200 km westward. This delayed continental break-up and the generation of oceanic crust by up to 20 million years.

The new models reveal that extension velocity plays a crucial role in understanding the widths of South Atlantic margins: faster crustal extension leads to longer rift migration and hence to more pronounced asymmetry of the generated continental margins.

Rifts constitute an important tectonic element of our planet. They are responsible for the shape of today's continents, and their activity still continues at present.

Illustrating a new aspect of plate tectonic theory, this study shows that during continental break-up, large amounts of material can be conveyed from one side of the plate boundary to the other, a process that has not been yet accounted for. The new models and analyses provide an important stepping-stone toward a comprehensive understanding of rift processes and continental margin formation.

###

Brune, S./Heine, C./Marta Pérez-Gussinyé, M./Sobolev, S.: "Rift migration explains continental margin asymmetry and crustal hyper-extension", Nature Communications. 5:4014 doi: 10.1038/ncomms5014 (2014), 06.06.2014

F.Ossing | Eurek Alert!

Further reports about: Atlantic Communications GFZ Geosciences Helmholtz activity asymmetry blocks extension formation

More articles from Earth Sciences:

nachricht Climate study finds human fingerprint in Northern Hemisphere greening
30.06.2016 | DOE/Oak Ridge National Laboratory

nachricht NASA sees heavy rain in Arabian Sea tropical cyclone
30.06.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells

30.06.2016 | Health and Medicine

Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools

30.06.2016 | Life Sciences

A drop of water as a model for the interplay of adhesion and stiction

30.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>