Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asymmetric continental margins and the slow birth of an ocean

06.06.2014

When South America split from Africa 150 to 120 million years ago, the South Atlantic formed and separated Brazil from Angola.

The continental margins formed through this separation are surprisingly different. Along offshore Angola 200 km wide, very thin slivers of continental crust have been detected, whereas the Brazilian counterpart margin features an abrupt transition between continental and oceanic crust.


"A newborn ocean. Only few tenths of kilometres separate the massive rift shoulders of the Sinai-Peninsula from the African continent on the far side of the Gulf of Suez. 130 Million years ago, the young South Atlantic ocean has likely looked similar (Image: Christian Heine, University of Sydney, under Creative Commons)"


"Asymmetry of the South Atlantic continental margins. Shown is a model cross section for the South Atlantic, shortly after the separation of Africa and South America 120 million years ago. (Image: Sascha Brune, German Research Centre for Geosciences GFZ)"

For decades, geoscientists have struggled to explain not only why the amount of thinning and the geometries of opposite rifted continental margin are not symmetric, but also why wide margins are often underlain by highly thinned continental crust.

Now geoscientists from the German Research Centre for Geosciences (GFZ), the University of Sydney and the University of London have found an explanation, published in the current issue of 'Nature Communications'. Using high-resolution computer models and geological data from the South Atlantic margins, they discovered that the centre of the rift, where the continental crust gets actively thinned through faulting, does not stay fixed during continental break-up, but migrates laterally.

"We could show that rifts are capable of moving sideways over hundreds of kilometres", says Dr Sascha Brune of the GFZ. "During rift migration, the crust on one side of the rift is weakened by hot upwelling material in Earth's mantle, whereas the other side is slightly stronger as the crust there is colder.

New faults form only on the warm, weak rift side, while those of the strong side become inactive." This leads to a sideways motion of the rift system, which is equivalent with conveying crustal material from the South American plate to the African plate. These transferred crustal blocks are strongly extended by the rift and finally constitute the enigmatic thin crustal slivers of the African margin.

Such a relocation of a rift takes its time: during the formation of the present-day Angolan and Brazilian margins, the rift centre migrated more than 200 km westward. This delayed continental break-up and the generation of oceanic crust by up to 20 million years.

The new models reveal that extension velocity plays a crucial role in understanding the widths of South Atlantic margins: faster crustal extension leads to longer rift migration and hence to more pronounced asymmetry of the generated continental margins.

Rifts constitute an important tectonic element of our planet. They are responsible for the shape of today's continents, and their activity still continues at present.

Illustrating a new aspect of plate tectonic theory, this study shows that during continental break-up, large amounts of material can be conveyed from one side of the plate boundary to the other, a process that has not been yet accounted for. The new models and analyses provide an important stepping-stone toward a comprehensive understanding of rift processes and continental margin formation.

###

Brune, S./Heine, C./Marta Pérez-Gussinyé, M./Sobolev, S.: "Rift migration explains continental margin asymmetry and crustal hyper-extension", Nature Communications. 5:4014 doi: 10.1038/ncomms5014 (2014), 06.06.2014

F.Ossing | Eurek Alert!

Further reports about: Atlantic Communications GFZ Geosciences Helmholtz activity asymmetry blocks extension formation

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>