Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASU researcher outlines strategies to curb urban heat island

22.02.2010
Protect yourself from the summer sun is good advice to children who want to play outside on a hot summer day and it is good advice to cities as a way to mitigate the phenomenon known as urban heat island.

For children, a hat, long sleeves and sun block provide protection. For cities, it might be canopies, additives to construction materials and smarter use of landscaping that helps protect it from the sun, said Harvey Bryan, an ASU professor of architecture.

Bryan presented several possible strategies a city could use to help it fight urban heat island (UHI) in a presentation he made at the annual meeting of the American Association for the Advancement of Science, held in San Diego, Feb. 18 – 22. Bryan's presentation, "Digital Simulations and Zoning Codes: To Mitigate Urban Heat Island," was presented on Feb. 21 in a session on Urban Design and Energy Demand: Transforming Cities for an Eco-Energy Future.

Urban heat island is a phenomenon experienced by large cities, especially those located in desert areas, where the constant heat of the day is absorbed by the buildings, pavement and concrete. The result is a rise in nighttime low temperature for a city's core from the stored heat of the day.

The higher nighttime temperatures mean more cooling is required for residents' comfort, resulting in increased power demand and potentially more greenhouse gases emitted. Phoenix, where summer nighttime temperatures often do not go below 90 F, is a classic example of the UHI, Bryan said.

Citing work he participated in about a year ago – with Daniel Hoffman, an ASU professor of architecture and Akram Rosheidat, an ASU doctoral student – which focused on ways of improving pedestrian comfort in downtown Phoenix, Bryan outlined several methods a city can employ that will help alleviate the UHI. Shade, not surprisingly, is one of the prime tools.

"Canopies to shade streets and sidewalks keep the concrete and asphalt cooler," Bryan explained. "Interestingly, sidewalks in downtown Phoenix during the early 1900s were canopied."

Bryan said another key aspect is being smart on material choices for the canopies.

"In addition to shading devices, color and thermal properties are also important considerations," Bryan said. "Lighter colors are best for any surface in the Valley. You also have to consider the heat capacity of the materials – denser material will absorb heat during the day and are slow at re-emitting at night."

In areas that cannot be canopied, Bryan said material additives use could play an important role. Phoenix, for example, has a large number of parking lots and streets that constantly absorb daytime heat.

"Introducing additives, like crumb rubber to asphalt and concrete, are ways of reducing heat capacity at the surface and making for a better nighttime profile," he said.

"The important part is to look at materials performance more than just during the daytime. We need a 24-hour profile to see how materials absorb heat during the day and how they emit it during the evening. We then look for materials that are reflective during the day and highly emitting during the evening."

All of this points to modeling as an important tool in mitigating UHI.

"It comes down to how we model the downtown and how we look at various scenarios with different materials using models that accurately simulate the radiative phenomena," Bryan explained. "Most cities have never used such powerful tools to find solutions to UHI."

Source: Harvey Bryan, (480) 965-6094

Media contact: Skip Derra, (480) 965-4823; skip.derra@asu.edu

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

Further reports about: ASU PHOENIX UHI construction material greenhouse gas heat capacity

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>