Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASU geoscientists find explanation for puzzling pockets of rock deep in Earth's mantle

02.08.2017

A team led by geoscientists from Arizona State University and Michigan State University has used computer modeling to explain how pockets of mushy rock accumulate at the boundary between Earth's core and mantle.

These pockets, lying roughly 2,900 kilometers (1,800 miles) below the surface, have been known for many years, but previously lacked an explanation of how they formed.


Tiny regions of compositionally distinct rock (red material, known as ultra-low velocity zones), collect at Earth's core-mantle boundary (tan surface), nearly halfway to the center of our planet. Small accumulations of this distinct rock collect near the margins of large thermochemical piles (green) that reside at the base of Earth's mantle.

Credit: Edward Garnero/ASU

The relatively small rock bodies are termed "ultra-low velocity zones" because seismic waves greatly slow down as they pass through them. Geoscientists have thought the zones are partially molten, yet the pockets are puzzling because many are observed in cooler regions of the deep mantle.

"These small regions have been assumed to be a partially molten version of the rock that surrounds them," says Mingming Li, lead author of the study, which was published August 2, 2017, in the journal Nature Communications. "But their global distribution and large variations of density, shape, and size suggest that they have a composition different from the mantle."

Li joined ASU's School of Earth and Space Exploration (SESE) this month as an assistant professor. He was a graduate student of former SESE associate professor Allen McNamara, also a coauthor on the paper; McNamara is now at Michigan State's Department of Earth and Environmental Sciences. The additional coauthors are SESE professor Edward Garnero and his PhD student Shule Yu.

"We don't know what ultra-low velocity zones are," says McNamara. "They are either hot, partially-molten portions of otherwise normal mantle, or they are something else entirely, some other composition."

Because seismic evidence allows both possibilities, he says, "We decided to model mantle convection by computer to investigate whether their shapes and positions can answer the question."

Do pockets relate to blobs?

About year ago, Garnero, McNamara, and SESE associate professor Dan Shim reported that two gigantic structures of rock deep in the Earth are likely made of something different from the rest of the mantle. They called the large structures "thermochemical piles," or more simply, blobs.

"While the origin and composition of these blobs are unknown," Garnero said at the time, "we suspect they hold important clues as to how the Earth was formed and how it works today."

What the big blobs are made of and how they formed still remain unknown, says Garnero. "But the new computer modeling explains how these ultra-low velocity zones are associated with the much bigger blobs."

Li says, "The ultra-low velocity zones are generally around tens of kilometers tall, and hundreds of kilometers wide or less. They are mostly located near the edges of the much larger blobs, but some of them are detected both inside the blobs and well away from them."

The outcome of the computer modeling showed that most of these ultra-low velocity zones are different in composition from the surrounding mantle, Li says. What's more, the modeling showed that pockets of rock with different compositions will migrate from anywhere on the core-mantle boundary towards the margins of the large blobs.

"The margins of the thermochemical piles are where mantle flow patterns converge," McNamara says, "and therefore these areas provide a 'collection depot' for denser types of rock."

Gathered by heat

The force driving this movement is heat, which powers convection in the mantle.

Earth's mantle is made of hot rock, but it behaves more like fudge simmering slowly on a stove. In the mantle, heat comes both from radioactivity within the mantle rock and from the planet's core, the center of which is about as hot as Sun's surface. Mantle rock responds to this heat with a slow churning -- convective -- motion.

"The details are not completely clear," says Li. But the modeling shows that rocks of different composition respond to the convection in a way that gathers compositionally similar materials together. This moves the small pockets of chemically distinct rocks to the edges of the hotter blobs above the core-mantle boundary.

"We ran 3D high-resolution computer modeling and we developed a method to track the movement of both the small pockets of ultra-low velocity zones and the much larger thermochemical piles." Li explains, "This allowed us to study how the small pockets move around and how their locations can be related to their origin."

McNamara says, "What was new about our approach -- and also computationally challenging -- was that the modeling simultaneously took into account vastly different scales of motion." These ranged from global mantle-scale convection patterns, to the large thermochemical piles in the lower mantle, and down to the very small-scale pockets of ultra-low velocity zone at the bottom.

"What we ultimately found," he says, "is that if ultra-low velocity zones are caused by melting of otherwise normal mantle, they should be located well inside of the thermochemical piles, where mantle temperatures are the hottest."

But he adds, "If the ultra-low velocity pockets of rock have a composition different from the ordinary mantle rock, then mantle convection would continually carry them to the edges of piles where they collect.

"This is consistent with what we see in the seismic observations."

Rocks diving deep?

Where do the different materials in the deep mantle come from in the first place?

"There are several possibilities," Garnero says. "Some material might be associated with former basaltic oceanic crust that got subducted deeply. Or it might be associated with chemical reactions between the outer core's iron-rich fluid and the crystalline silicate mantle."

Garnero says that where the rock in ultra-low velocity zones originally came from is currently unsolved. But the process of collecting this material into small pockets of rock is clear.

"You can have various mechanisms, such as plate tectonics, that push rock of differing chemistries into the deepest mantle anywhere on Earth," he says.

"But once these different rocks have gone down deep, convection wins and sweeps them to the hot regions, namely, where the continental-sized thermochemical piles reside."

Media Contact

Robert Burnham
robert.burnham@asu.edu
480-458-8207

 @ASU

http://asunews.asu.edu/ 

Robert Burnham | EurekAlert!

More articles from Earth Sciences:

nachricht Filling the gap: High-latitude volcanic eruptions also have global impact
20.11.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Antarctic landscape insights keep ice loss forecasts on the radar
20.11.2017 | University of Edinburgh

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>