Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asteroid ice may be 'living fossil' with clues to oceans' origins

29.04.2010
An asteroid may have hit Earth and brought our planet its water

The first-ever discovery of ice and organic molecules on an asteroid may hold clues to the origins of Earth's oceans and life 4 billion years ago.

University of Central Florida researchers detected a thin layer of water ice and organic molecules on the surface of 24 Themis, the largest in a family of asteroids orbiting between Mars and Jupiter.

Their unexpected findings will be published Thursday, April 29 in Nature, which will featuretwo complementary articles by the UCF-led team and by another team of planetary scientists.

"What we've found suggests that an asteroid like this one may have hit Earth and brought our planet its water," said UCF Physics Professor HumbertoCampins, the study's lead author.

Some theories suggest asteroids brought water to Earth after the planet formed dry. Scientists say the salts and water that have been found in some meteorites support this view.

Using NASA's Infrared Telescope Facility in Hawaii, Campins and his team of researchers measured the intensity of the reflected sunlight as 24 Themis rotated. Differences in intensity at different wavelengths helped researchers determine the makeup of the asteroid's surface.

Researchers were surprised to find ice and carbon-based compounds evenly distributed on 24 Themis. More specifically, the discovery of ice is unexpected because surface ice should be short lived on asteroids, which are expected to be too warm for ice to survive for long.

The distance between this asteroid and the sun is about three times greater than between Earth and the sun.

Researchers will continue testing various hypotheses to explain the presence of ice. Perhaps most promising is the possibility that 24 Themis might have preserved the ice in its subsoil, just below the surface, as a kind of "living fossil" or remnant of an early solar system that was generally considered to have disappeared long ago.

Campins' team is made up of scientists from UCF, the University of La Laguna in Spain, University of Southern Maine, University of Maryland, Universidade Federal Do Rio De Janeiro in Brazil, NASA-Ames Research Center and NAIC-Arecibo Observatory in Puerto Rico.

Chad Binette | EurekAlert!
Further information:
http://ww.ucf.edu

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>