Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asian scientists shake up earthquake research

12.03.2010
Researchers from Taiwan have proposed a large-scale data network allowing the whole of the Asia-Pacific to share and analyse seismic data gathered on earthquakes, one of which struck Taiwan just seven days ago.

As recent events in Haiti, Chile and Turkey have demonstrated, earthquakes can have devastating effect. Those living in the Asia-Pacific are well aware of this. Lying on the so-called “Ring of Fire”, countries such as Taiwan are at high risk of natural disasters such as earthquakes, volcanoes, floods, and tsunamis. Today researchers at the International Symposium on Grid Computing, ISGC 2010, have gathered to share their experience of mitigating such disasters.

“Earthquake prediction is an unsolved problem. But using data gathered by seismometers we are able to predict ground motion and reduce the damage. Providing access to earthquake data will help the Asia-Pacific to be better prepared when an earthquake strikes - the more information we have, the better.” says Li Zhao from the Institute of Earth Sciences, Academia Sinica, Taipei.

“Our dream is to have an integrated regional data centre for the Asia-Pacific, which is accessible for scientists to study the earth nature.” says Wen-Tzong Liang also of the Institute of Earth Sciences. This could improve scientist's knowledge of earthquakes and the earth's interior, providing information for engineers to design and reinforce buildings appropriately as well as teaching citizens how to respond when an earthquake strikes.

In order for such a network to be successful, data needs to be gathered from countries across the Asia-Pacific, not just those that are prone to earthquakes. The team at Academia Sinica, led by Bor-Shouh Huang, have already started tackling this problem. In the last two years they have set up ten new stations along the Vietnamese coast, and are set to deploy even more in the Philippines.

These seismic stations will produce real-time data continuously for any local data centre to monitor earthquake activity in this region. Giving scientists wider access to the archived data can help them predict what will happen when an earthquake strikes and understand what the earth structure is below the surface.

“We use computers to simulate wave propagation so if there's an earthquake in Taiwan we can determine how much the earth will shake anywhere in the world.” says Li Zhao from the Institute of Earth Sciences, Academia Sinica. “Using archived data records we can investigate the structure inside the earth, and if we know this we can better predict the ground motion. For example Taipei lies in a basin – the ground is covered by a soft sedimentary layer. So if an earthquake happens, Taipei will experience a higher motion than the surrounding area, a process called amplification.”

To set up this network, researchers are hoping grid technologies can provide robust and reliable ways to transmit and store data. They have already turned to grid computing to help analyse the data itself.

“The most important ground motion is in the frequency of a few Hertz, so the higher the frequency the more realistic the prediction is. But doing calculations at very high frequency requires a lot of computing power. Grid technology gives any researcher with an internet connection a way to run simulations for any earthquake they wish to study.” says Zhao. Zhao demonstrated a new gateway which gives scientists easy access to a grid-based simulator at an ISGC 2010 workshop earlier this week.

Vicky Huang | ASGC
Further information:
http://event.twgrid.org/isgc2010
http://www.earth.sinica.edu.tw/en/

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>