Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asian monsoon much older than previously thought

15.09.2014

The Asian monsoon already existed 40 million years ago during a period of high atmospheric carbon dioxide and warmer temperatures, reports an international research team led by a University of Arizona geoscientist.

Scientists thought the climate pattern known as the Asian monsoon began 22-25 million years ago as a result of the uplift of the Tibetan Plateau and the Himalaya Mountains.


Mana Rugbumrung, a researcher at the Department of Mineral Resources in Bangkok, examines the freshly excavated skull of an anthracothere, a hippopotamus-like mammal that lived 40 million years ago in what is now Myanmar. Analyses of the teeth of these ancient mammals and others from the area revealed that the animals lived in a monsoon climate that had dry winters and very rainy summers.

Credit: Alexis Licht 2012

"It is surprising," said lead author Alexis Licht, now a research associate in the UA department of geosciences. "People thought the monsoon started much later."

The monsoon, the largest climate system in the world, governs the climate in much of mainland Asia, bringing torrential summer rains and dry winters.

Co-author Jay Quade, a UA professor of geosciences, said, "This research compellingly shows that a strong Asian monsoon system was in place at least by 35-40 million years ago."

The research by Licht and his colleagues shows the earlier start of the monsoon occurred at a time when atmospheric CO2 was three to four times greater than it is now. The monsoon then weakened 34 million years ago when atmospheric CO2 then decreased by 50 percent and an ice age occurred.

Licht said the study is the first to show the rise of the monsoon is as much a result of global climate as it is a result of topography. The team's paper is scheduled for early online publication in the journal Nature on Sept. 14.

This finding has major consequences for the ongoing global warming," he said. "It suggests increasing the atmospheric CO2 will increase the monsoonal precipitation significantly."

Unraveling the monsoon's origins required contributions from three different teams of scientists that were independently studying the environment of 40 million years ago.

All three investigations showed the monsoon climate pattern occurred 15 million years earlier than previously thought. Combining different lines of evidence from different places strengthened the group's confidence in the finding, Licht said. The climate modeling team also linked the development of the monsoon to the increased CO2 of the time.

Licht and his colleagues at Poitiers and Nancy universities in France examined snail and mammal fossils in Myanmar. The group led by G. Dupont-Nivet and colleagues at Utrecht University in the Netherlands studied lake deposits in Xining Basin in central China. J.-B. Ladant and Y. Donnadieu of the Laboratory of Sciences of the Climate and Environment (LSCE) in Gif-sur-Yvette, France, created climate simulations of the Asian climate 40 million years ago.

A complete list of authors of the group's publication, "Asian monsoons in a late Eocene greenhouse world," is at the bottom of this release, as is a list of funding sources.

Licht didn't set out to study the origin of the monsoon.

He chose his study site in Myanmar because the area was rich in mammal fossils, including some of the earliest ancestors of modern monkeys and apes. The research, part of his doctoral work at the University of Poitiers, focused on understanding the environments those early primates inhabited. Scientists thought those primates had a habitat like the current evergreen tropical rain forests of Borneo, which do not have pronounced differences between wet and dry seasons.

To learn about the past environment, Licht analyzed 40-million-year-old freshwater snail shells and teeth of mammals to see what types of oxygen they contained. The ratio of two different forms of oxygen, oxygen-18 and oxygen-16, shows whether the animal lived in a relatively wet climate or an arid one.

"One of the goals of the study was to document the pre-monsoonal conditions, but what we found were monsoonal conditions," he said.

To his surprise, the oxygen ratios told an unexpected story: The region had a seasonal pattern very much like the current monsoon – dry winters and very rainy summers.

"The early primates of Myanmar lived under intense seasonal stress – aridity and then monsoons," he said. "That was completely unexpected."

The team of researchers working in China found another line of evidence pointing to the existence of the monsoon about 40 million years ago. The monsoon climate pattern generates winter winds that blow dust from central Asia and deposits it in thick piles in China. The researchers found deposits of such dust dating back 41 million years ago, indicating the monsoon had occurred that long ago.

The third team's climate simulations indicated strong Asian monsoons 40 million years ago. The simulations showed the level of atmospheric CO2 was connected to the strength of the monsoon, which was stronger 40 million years ago when CO2 levels were higher and weakened 34 million years ago when CO2 levels dropped.

Licht's next step is to investigate how geologically short-term increases of atmospheric CO2 known as hyperthermals affected the monsoon's behavior 40 million years ago.

"The response of the monsoon to those hyperthermals could provide interesting analogs to the ongoing global warming," he said.

###

Researcher contact information:

Alexis Licht
University of Arizona
alicht@email.arizona.edu
Languages spoken: French and English

Jay Quade
University of Arizona
quadej@email.arizona.edu
(520) 626-1847

Jean-Jacques Jaeger
University of Poitiers (France)
+33549453758
jean-jacques.jaeger@univ-poitiers.fr

Guillaume Dupont-Nivet
University of Rennes (France)
+493319775784 (currently in Potsdam, Germany)
guillaume.dupont-nivet@univ-rennes1.fr

Yannick Donnadieu
+33169088666
Laboratory of Sciences of the Climate and Environment (France)
Yannick.Donnadieu@lsce.ipsl.fr

Related Web sites:

Alexis Licht: http://www.ipgp.fr/~licht/index.html

Jay Quade: http://www.geo.arizona.edu/Quade

UA Geosciences: http://www.geo.arizona.edu/

Complete list of authors and their affiliations:

A. Licht (University of Arizona, Tucson; University of Poitiers, France; and Centre of Petrographic and Geochemical Research (CRPG), Vandoeuvre les Nancy, France); M. van Cappelle (Utrecht University, Netherlands and Imperial College, London); H. A. Abels (Utrecht University, Netherlands and University of Leuven, Belgium); J.-B. Ladant (Laboratory of Sciences of the Climate and Environment (LSCE), Gif-sur-Yvette, France); J. Trabucho-Alexandre (Durham University, U.K); C. France-Lanord (CRPG, Vandoeuvre les Nancy, France); Y. Donnadieu (LSCE, Gif-sur-Yvette, France); J. Vandenberghe (Vrije University, Amsterdam): T. Rigaudier (CRPG, Vandoeuvre les Nancy, France); C. Lécuyer (University of Lyon, France); D. Terry Jr. (Temple University, Philadelphia); R. Adriaens (University of Leuven, Belgium); A. Boura (Pierre and Marie Curie University and National Museum of Natural History, Paris); Z. Guo (Peking University, Beijing); Aung Naing Soe (Defence Services Academy, Pyin Oo Lwin, Myanmar); J. Quade (University of Arizona, Tucson); G. Dupont-Nivet (University of Leuven, Belgium; Peking University, Beijing; University of Rennes, France; University of Potsdam, Germany); J.-J. Jaeger (University of Poitiers, France).

The research was supported by the following organizations: 09-BLAN-0238-02 Program of the French National Research Agency (ANR); the Universities of Poitiers and Nancy; the Netherlands Organisation for Scientific Research (NWO-ALW); the Marie Curie Career Integration Grant (CIG) 294282; the Ministry of Culture of the Republic of the Union of Myanmar; the French Ministries of Foreign Affairs and of Higher Education and Research; the Alexander von Humboldt Foundation; the Chinese Ministry of Education; the National Natural Science Foundation of China; and the Fyssen Foundation.

Mari N. Jensen | Eurek Alert!

Further reports about: Arizona Asian CO2 Climate Environment Foundation Gif-sur-Yvette Myanmar deposits monsoon monsoons primates

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>