Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asian monsoon much older than previously thought

15.09.2014

The Asian monsoon already existed 40 million years ago during a period of high atmospheric carbon dioxide and warmer temperatures, reports an international research team led by a University of Arizona geoscientist.

Scientists thought the climate pattern known as the Asian monsoon began 22-25 million years ago as a result of the uplift of the Tibetan Plateau and the Himalaya Mountains.


Mana Rugbumrung, a researcher at the Department of Mineral Resources in Bangkok, examines the freshly excavated skull of an anthracothere, a hippopotamus-like mammal that lived 40 million years ago in what is now Myanmar. Analyses of the teeth of these ancient mammals and others from the area revealed that the animals lived in a monsoon climate that had dry winters and very rainy summers.

Credit: Alexis Licht 2012

"It is surprising," said lead author Alexis Licht, now a research associate in the UA department of geosciences. "People thought the monsoon started much later."

The monsoon, the largest climate system in the world, governs the climate in much of mainland Asia, bringing torrential summer rains and dry winters.

Co-author Jay Quade, a UA professor of geosciences, said, "This research compellingly shows that a strong Asian monsoon system was in place at least by 35-40 million years ago."

The research by Licht and his colleagues shows the earlier start of the monsoon occurred at a time when atmospheric CO2 was three to four times greater than it is now. The monsoon then weakened 34 million years ago when atmospheric CO2 then decreased by 50 percent and an ice age occurred.

Licht said the study is the first to show the rise of the monsoon is as much a result of global climate as it is a result of topography. The team's paper is scheduled for early online publication in the journal Nature on Sept. 14.

This finding has major consequences for the ongoing global warming," he said. "It suggests increasing the atmospheric CO2 will increase the monsoonal precipitation significantly."

Unraveling the monsoon's origins required contributions from three different teams of scientists that were independently studying the environment of 40 million years ago.

All three investigations showed the monsoon climate pattern occurred 15 million years earlier than previously thought. Combining different lines of evidence from different places strengthened the group's confidence in the finding, Licht said. The climate modeling team also linked the development of the monsoon to the increased CO2 of the time.

Licht and his colleagues at Poitiers and Nancy universities in France examined snail and mammal fossils in Myanmar. The group led by G. Dupont-Nivet and colleagues at Utrecht University in the Netherlands studied lake deposits in Xining Basin in central China. J.-B. Ladant and Y. Donnadieu of the Laboratory of Sciences of the Climate and Environment (LSCE) in Gif-sur-Yvette, France, created climate simulations of the Asian climate 40 million years ago.

A complete list of authors of the group's publication, "Asian monsoons in a late Eocene greenhouse world," is at the bottom of this release, as is a list of funding sources.

Licht didn't set out to study the origin of the monsoon.

He chose his study site in Myanmar because the area was rich in mammal fossils, including some of the earliest ancestors of modern monkeys and apes. The research, part of his doctoral work at the University of Poitiers, focused on understanding the environments those early primates inhabited. Scientists thought those primates had a habitat like the current evergreen tropical rain forests of Borneo, which do not have pronounced differences between wet and dry seasons.

To learn about the past environment, Licht analyzed 40-million-year-old freshwater snail shells and teeth of mammals to see what types of oxygen they contained. The ratio of two different forms of oxygen, oxygen-18 and oxygen-16, shows whether the animal lived in a relatively wet climate or an arid one.

"One of the goals of the study was to document the pre-monsoonal conditions, but what we found were monsoonal conditions," he said.

To his surprise, the oxygen ratios told an unexpected story: The region had a seasonal pattern very much like the current monsoon – dry winters and very rainy summers.

"The early primates of Myanmar lived under intense seasonal stress – aridity and then monsoons," he said. "That was completely unexpected."

The team of researchers working in China found another line of evidence pointing to the existence of the monsoon about 40 million years ago. The monsoon climate pattern generates winter winds that blow dust from central Asia and deposits it in thick piles in China. The researchers found deposits of such dust dating back 41 million years ago, indicating the monsoon had occurred that long ago.

The third team's climate simulations indicated strong Asian monsoons 40 million years ago. The simulations showed the level of atmospheric CO2 was connected to the strength of the monsoon, which was stronger 40 million years ago when CO2 levels were higher and weakened 34 million years ago when CO2 levels dropped.

Licht's next step is to investigate how geologically short-term increases of atmospheric CO2 known as hyperthermals affected the monsoon's behavior 40 million years ago.

"The response of the monsoon to those hyperthermals could provide interesting analogs to the ongoing global warming," he said.

###

Researcher contact information:

Alexis Licht
University of Arizona
alicht@email.arizona.edu
Languages spoken: French and English

Jay Quade
University of Arizona
quadej@email.arizona.edu
(520) 626-1847

Jean-Jacques Jaeger
University of Poitiers (France)
+33549453758
jean-jacques.jaeger@univ-poitiers.fr

Guillaume Dupont-Nivet
University of Rennes (France)
+493319775784 (currently in Potsdam, Germany)
guillaume.dupont-nivet@univ-rennes1.fr

Yannick Donnadieu
+33169088666
Laboratory of Sciences of the Climate and Environment (France)
Yannick.Donnadieu@lsce.ipsl.fr

Related Web sites:

Alexis Licht: http://www.ipgp.fr/~licht/index.html

Jay Quade: http://www.geo.arizona.edu/Quade

UA Geosciences: http://www.geo.arizona.edu/

Complete list of authors and their affiliations:

A. Licht (University of Arizona, Tucson; University of Poitiers, France; and Centre of Petrographic and Geochemical Research (CRPG), Vandoeuvre les Nancy, France); M. van Cappelle (Utrecht University, Netherlands and Imperial College, London); H. A. Abels (Utrecht University, Netherlands and University of Leuven, Belgium); J.-B. Ladant (Laboratory of Sciences of the Climate and Environment (LSCE), Gif-sur-Yvette, France); J. Trabucho-Alexandre (Durham University, U.K); C. France-Lanord (CRPG, Vandoeuvre les Nancy, France); Y. Donnadieu (LSCE, Gif-sur-Yvette, France); J. Vandenberghe (Vrije University, Amsterdam): T. Rigaudier (CRPG, Vandoeuvre les Nancy, France); C. Lécuyer (University of Lyon, France); D. Terry Jr. (Temple University, Philadelphia); R. Adriaens (University of Leuven, Belgium); A. Boura (Pierre and Marie Curie University and National Museum of Natural History, Paris); Z. Guo (Peking University, Beijing); Aung Naing Soe (Defence Services Academy, Pyin Oo Lwin, Myanmar); J. Quade (University of Arizona, Tucson); G. Dupont-Nivet (University of Leuven, Belgium; Peking University, Beijing; University of Rennes, France; University of Potsdam, Germany); J.-J. Jaeger (University of Poitiers, France).

The research was supported by the following organizations: 09-BLAN-0238-02 Program of the French National Research Agency (ANR); the Universities of Poitiers and Nancy; the Netherlands Organisation for Scientific Research (NWO-ALW); the Marie Curie Career Integration Grant (CIG) 294282; the Ministry of Culture of the Republic of the Union of Myanmar; the French Ministries of Foreign Affairs and of Higher Education and Research; the Alexander von Humboldt Foundation; the Chinese Ministry of Education; the National Natural Science Foundation of China; and the Fyssen Foundation.

Mari N. Jensen | Eurek Alert!

Further reports about: Arizona Asian CO2 Climate Environment Foundation Gif-sur-Yvette Myanmar deposits monsoon monsoons primates

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>