Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asian monsoon much older than previously thought

15.09.2014

The Asian monsoon already existed 40 million years ago during a period of high atmospheric carbon dioxide and warmer temperatures, reports an international research team led by a University of Arizona geoscientist.

Scientists thought the climate pattern known as the Asian monsoon began 22-25 million years ago as a result of the uplift of the Tibetan Plateau and the Himalaya Mountains.


Mana Rugbumrung, a researcher at the Department of Mineral Resources in Bangkok, examines the freshly excavated skull of an anthracothere, a hippopotamus-like mammal that lived 40 million years ago in what is now Myanmar. Analyses of the teeth of these ancient mammals and others from the area revealed that the animals lived in a monsoon climate that had dry winters and very rainy summers.

Credit: Alexis Licht 2012

"It is surprising," said lead author Alexis Licht, now a research associate in the UA department of geosciences. "People thought the monsoon started much later."

The monsoon, the largest climate system in the world, governs the climate in much of mainland Asia, bringing torrential summer rains and dry winters.

Co-author Jay Quade, a UA professor of geosciences, said, "This research compellingly shows that a strong Asian monsoon system was in place at least by 35-40 million years ago."

The research by Licht and his colleagues shows the earlier start of the monsoon occurred at a time when atmospheric CO2 was three to four times greater than it is now. The monsoon then weakened 34 million years ago when atmospheric CO2 then decreased by 50 percent and an ice age occurred.

Licht said the study is the first to show the rise of the monsoon is as much a result of global climate as it is a result of topography. The team's paper is scheduled for early online publication in the journal Nature on Sept. 14.

This finding has major consequences for the ongoing global warming," he said. "It suggests increasing the atmospheric CO2 will increase the monsoonal precipitation significantly."

Unraveling the monsoon's origins required contributions from three different teams of scientists that were independently studying the environment of 40 million years ago.

All three investigations showed the monsoon climate pattern occurred 15 million years earlier than previously thought. Combining different lines of evidence from different places strengthened the group's confidence in the finding, Licht said. The climate modeling team also linked the development of the monsoon to the increased CO2 of the time.

Licht and his colleagues at Poitiers and Nancy universities in France examined snail and mammal fossils in Myanmar. The group led by G. Dupont-Nivet and colleagues at Utrecht University in the Netherlands studied lake deposits in Xining Basin in central China. J.-B. Ladant and Y. Donnadieu of the Laboratory of Sciences of the Climate and Environment (LSCE) in Gif-sur-Yvette, France, created climate simulations of the Asian climate 40 million years ago.

A complete list of authors of the group's publication, "Asian monsoons in a late Eocene greenhouse world," is at the bottom of this release, as is a list of funding sources.

Licht didn't set out to study the origin of the monsoon.

He chose his study site in Myanmar because the area was rich in mammal fossils, including some of the earliest ancestors of modern monkeys and apes. The research, part of his doctoral work at the University of Poitiers, focused on understanding the environments those early primates inhabited. Scientists thought those primates had a habitat like the current evergreen tropical rain forests of Borneo, which do not have pronounced differences between wet and dry seasons.

To learn about the past environment, Licht analyzed 40-million-year-old freshwater snail shells and teeth of mammals to see what types of oxygen they contained. The ratio of two different forms of oxygen, oxygen-18 and oxygen-16, shows whether the animal lived in a relatively wet climate or an arid one.

"One of the goals of the study was to document the pre-monsoonal conditions, but what we found were monsoonal conditions," he said.

To his surprise, the oxygen ratios told an unexpected story: The region had a seasonal pattern very much like the current monsoon – dry winters and very rainy summers.

"The early primates of Myanmar lived under intense seasonal stress – aridity and then monsoons," he said. "That was completely unexpected."

The team of researchers working in China found another line of evidence pointing to the existence of the monsoon about 40 million years ago. The monsoon climate pattern generates winter winds that blow dust from central Asia and deposits it in thick piles in China. The researchers found deposits of such dust dating back 41 million years ago, indicating the monsoon had occurred that long ago.

The third team's climate simulations indicated strong Asian monsoons 40 million years ago. The simulations showed the level of atmospheric CO2 was connected to the strength of the monsoon, which was stronger 40 million years ago when CO2 levels were higher and weakened 34 million years ago when CO2 levels dropped.

Licht's next step is to investigate how geologically short-term increases of atmospheric CO2 known as hyperthermals affected the monsoon's behavior 40 million years ago.

"The response of the monsoon to those hyperthermals could provide interesting analogs to the ongoing global warming," he said.

###

Researcher contact information:

Alexis Licht
University of Arizona
alicht@email.arizona.edu
Languages spoken: French and English

Jay Quade
University of Arizona
quadej@email.arizona.edu
(520) 626-1847

Jean-Jacques Jaeger
University of Poitiers (France)
+33549453758
jean-jacques.jaeger@univ-poitiers.fr

Guillaume Dupont-Nivet
University of Rennes (France)
+493319775784 (currently in Potsdam, Germany)
guillaume.dupont-nivet@univ-rennes1.fr

Yannick Donnadieu
+33169088666
Laboratory of Sciences of the Climate and Environment (France)
Yannick.Donnadieu@lsce.ipsl.fr

Related Web sites:

Alexis Licht: http://www.ipgp.fr/~licht/index.html

Jay Quade: http://www.geo.arizona.edu/Quade

UA Geosciences: http://www.geo.arizona.edu/

Complete list of authors and their affiliations:

A. Licht (University of Arizona, Tucson; University of Poitiers, France; and Centre of Petrographic and Geochemical Research (CRPG), Vandoeuvre les Nancy, France); M. van Cappelle (Utrecht University, Netherlands and Imperial College, London); H. A. Abels (Utrecht University, Netherlands and University of Leuven, Belgium); J.-B. Ladant (Laboratory of Sciences of the Climate and Environment (LSCE), Gif-sur-Yvette, France); J. Trabucho-Alexandre (Durham University, U.K); C. France-Lanord (CRPG, Vandoeuvre les Nancy, France); Y. Donnadieu (LSCE, Gif-sur-Yvette, France); J. Vandenberghe (Vrije University, Amsterdam): T. Rigaudier (CRPG, Vandoeuvre les Nancy, France); C. Lécuyer (University of Lyon, France); D. Terry Jr. (Temple University, Philadelphia); R. Adriaens (University of Leuven, Belgium); A. Boura (Pierre and Marie Curie University and National Museum of Natural History, Paris); Z. Guo (Peking University, Beijing); Aung Naing Soe (Defence Services Academy, Pyin Oo Lwin, Myanmar); J. Quade (University of Arizona, Tucson); G. Dupont-Nivet (University of Leuven, Belgium; Peking University, Beijing; University of Rennes, France; University of Potsdam, Germany); J.-J. Jaeger (University of Poitiers, France).

The research was supported by the following organizations: 09-BLAN-0238-02 Program of the French National Research Agency (ANR); the Universities of Poitiers and Nancy; the Netherlands Organisation for Scientific Research (NWO-ALW); the Marie Curie Career Integration Grant (CIG) 294282; the Ministry of Culture of the Republic of the Union of Myanmar; the French Ministries of Foreign Affairs and of Higher Education and Research; the Alexander von Humboldt Foundation; the Chinese Ministry of Education; the National Natural Science Foundation of China; and the Fyssen Foundation.

Mari N. Jensen | Eurek Alert!

Further reports about: Arizona Asian CO2 Climate Environment Foundation Gif-sur-Yvette Myanmar deposits monsoon monsoons primates

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>