Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As CO2 acidifies the oceans, scientists develop a new way to measure its effect on marine ecosystems

19.11.2014

Hebrew University researchers surveyed a 5,000 km long strip of the sea and measured the calcification rates of coral reefs and open sea plankton over the whole Red Sea area

Following a 5,000 km long ocean survey, research published in the Proceedings of the National Academy of Sciences presents a new way to measure how the acidification of water is affecting marine ecosystems over an entire oceanic basin.


Figure 1: An aerial photo of a coral reef. Researchers developed a new tool to quantify the effect of ocean acidification on calcifying organisms. (Photo: Boaz Lazar, Hebrew University)


Figure 2: A Google Earth image of the research cruise showing the sampling stations along the ~5,000 Km oceanographic transect described in the PNAS paper.

As a result of man-made emissions, the content of CO2 in the atmosphere and oceans has increased dramatically during recent decades. In the ocean, the accumulating CO2 is gradually acidifying the surface waters, making it harder for shelled organisms like corals (Figure 1) and certain open sea plankton to build their calcium carbonate skeletons.

Since this process impacts the functioning of many marine ecosystems, it has been intensively studied in recent years. However, getting an accurate measure is complicated because the effect of ocean acidification on the rates of calcium produced by marine organisms is highly variable and species specific.

Since scientists tend to use local and site-specific field measurements, treating reef environments and open sea environments separately, their measurements reflect the local response of individual organisms to elevated CO2 levels, and not the overall picture.

To get a clearer picture of how ocean acidification is affecting large marine areas, a group of Israeli researchers studied a 5,000 km long strip of ocean (Figure 2), from Eilat to the Seychelles crossing the Red Sea, the Gulf of Aden and the Western Indian Ocean.

The group was led by Profs. Boaz Lazar and Jonathan Erez and the Ph.D. student Zvi Steiner, together with Prof. Amitai Katz, all from the Fredy and Nadine Herrmann Institute of Earth Sciences at the Hebrew University of Jerusalem, together with Prof. Aldo Shemesh and Dr. Ruth Yam of the Weizmann Institute of Science.

The researchers developed a new method to simultaneously assess the overall calcification rates of coral reefs and pelagic (open sea) plankton over a whole oceanic basin, based on variations in surface water chemistry. These variations result from the tendency of organisms that precipitate calcium carbonate skeletons to replace some of the calcium in their skeletons with other elements (e.g. the element strontium).

These replacements depend on growth conditions and are typical for each group of organisms. Owing to this characteristic, corals produce calcium carbonate with a different chemistry than calcareous (composed largely of calcium carbonate) plankton, and their overall effect alters the chemistry of the ocean water. This is the first study that demonstrates the feasibility of quantifying this type of information on an oceanic basin scale.

The group estimated that pelagic plankton precipitate 80% of the Red Sea calcium carbonate, and coral reefs precipitate about 20%. This data is a crucial milestone if we wish to track the effect of anthropogenic activity originating from human actions, since it is not possible to quantify change without having objective baseline conditions.

Monitoring the variations in coral and plankton growth rates every few years can provide essential information regarding rates of environmental change in tropical and subtropical seas like the Red Sea, Caribbean and South China Sea.

The research was published in PNAS (Proceedings of the National Academy of Sciences of the United States of America) as ”Basin scale estimates of pelagic and coral reef calcification in the Red Sea and Western Indian Ocean”. The research was supported by the Israel Science Foundation, the Bill and Melinda Gates Foundation and the Israeli Ministry of Science and Technology.

For information or interviews, contact:

Dov Smith
Hebrew University Foreign Press Liaison
02-5882844 / +972-54-8820860
dovs@savion.huji.ac.il

Dov Smith | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>