Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arsenic and old toenails

24.02.2009
New research highlights environmental exposure to toxin

Scientists from Leicester and Nottingham have devised a method for identifying levels of exposure to environmental arsenic – by testing toenail clippings.

Arsenic occurs naturally in the environment and people can be exposed to it in several ways, for example through contaminated water, food, dust or soil. The risk of exposure is greater in certain areas of the UK where the natural geology and historic mining activities have led to widespread contamination of the environment with arsenic. Long term exposure to arsenic is associated with increases in lung, liver, bladder and kidney cancers and skin growths.

Previous studies using hair have suggested high levels of arsenic in the bodies of King George III and Napoleon Bonaparte. Now doctoral research at the British Geological Survey by Mark Button of the University of Leicester has used toenail clippings to find fresh evidence of exposure to environmental arsenic within a UK population living close to a former arsenic mine. The research, published online ahead of print in the Journal of Environmental Monitoring, was carried out with Dr Gawen Jenkin, Department of Geology, University of Leicester; Dr Chris Harrington, School of Science and Technology at Nottingham Trent University and Dr Michael Watts of the British Geological Survey. The research was funded by the British Geological Survey.

Mark Button said "We initially identified high levels of arsenic in earthworms living in contaminated soils surrounding the former mine. That got us thinking about potential exposure in people living close to the site."

The researchers collected toenails and washed and acid digested the samples under microwave irradiation. They then analysed the samples using inductively coupled plasma mass spectrometry.

Mark Button added: "This preliminary research indicates that people living close to a former arsenic mine have elevated levels of arsenic in their toenails. However, the potential health risks in this case, if any, are not yet clear and no arsenic related health issues have been reported. A large-scale and more detailed biomonitoring study is required to confirm these initial results."

Dr Jenkin, lecturer in Applied Geology at the University of Leicester said: "This is the first time that the chemical form of the arsenic in the toenails has been measured – that can tell us something about how it got in there and possible risk factors.

Dr Jenkin added: "There is definitely more research needed to look at - amongst other things - a larger sample of volunteers, to see if the values change with time (it is quite possible the high values recorded are a one-off for that person, or due to slow toenail growth concentrating harmless quantities of arsenic), and to look at the possible pathways by which the arsenic is ingested. Coupling our analyses with regular blood measurements would be very revealing."

However the researchers are definitely NOT requiring people to send in their toenail clippings. Neither can you assess arsenic contamination simply by looking at your toenails.

Dr Jenkin said: "Even in those people with elevated amounts it is present in tiny quantities – less than 0.003% in the toenail. In people who have not been exposed at all it is less than 0.00003%. If a nail looks different from normal that is usually due to physical damage (you stubbed your toe or dropped something on it) or a minor fungal infection that can be easily cleared up by a visit to the doctor."

Dr. Gawen Jenkin | EurekAlert!
Further information:
http://www.leicester.ac.uk

More articles from Earth Sciences:

nachricht Improved monitoring of coral reefs with the HyperDiver
24.08.2017 | Max-Planck-Institut für marine Mikrobiologie

nachricht Hidden river once flowed beneath Antarctic ice
22.08.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>