Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic on the verge of record ozone loss

14.03.2011
Arctic-wide measurements verify rapid depletion in recent days

Unusually low temperatures in the Arctic ozone layer have recently initiated massive ozone depletion. The Arctic appears to be heading for a record loss of this trace gas that protects the Earth’s surface against ultraviolet radiation from the sun.

This result has been found by measurements carried out by an international network of over 30 ozone sounding stations spread all over the Arctic and Subarctic and coordinated by the Potsdam Research Unit of the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association (AWI) in Germany.

“Our measurements show that at the relevant altitudes about half of the ozone that was present above the Arctic has been destroyed over the past weeks,” says AWI researcher Markus Rex, describing the current situation. “Since the conditions leading to this unusually rapid ozone depletion continue to prevail, we expect further depletion to occur.” The changes observed at present may also have an impact outside the thinly populated Arctic. Air masses exposed to ozone loss above the Arctic tend to drift southwards later. Hence, due to reduced UV protection by the severely thinned ozone layer, episodes of high UV intensity may also occur in middle latitudes. “Special attention should thus be devoted to sufficient UV protection in spring this year,” recommends Rex.

Ozone is lost when breakdown products of anthropogenic chlorofluorocarbons (CFCs) are turned into aggressive, ozone destroying substances during exposure to extremely cold conditions. For several years now scientists have pointed to a connection between ozone loss and climate change, and particularly to the fact that in the Arctic stratosphere at about 20km altitude, where the ozone layer is, the coldest winters seem to have been getting colder and leading to larger ozone losses. “The current winter is a continuation of this development, which may indeed be connected to global warming,” atmosphere researcher Rex explains the connection that appears paradoxical only at first glance.

“To put it in a simplified manner, increasing greenhouse gas concentrations retain the Earth’s thermal radiation at lower layers of the atmosphere, thus heating up these layers. Less of the heat radiation reaches the stratosphere, intensifying the cooling effect there.” This cooling takes place in the ozone layer and can contribute to larger ozone depletion. “However, the complicated details of the interactions between the ozone layer and climate change haven’t been completely understood yet and are the subject of current research projects,” states Rex. The European Union finances this work in the RECONCILE project, a research programme supported with 3.5 million euros in which 16 research institutions from eight European countries are working towards improved understanding of the Arctic ozone layer.

In the long term the ozone layer will recover thanks to extensive environmental policy measures enacted for its protection. This winter’s likely record-breaking ozone loss does not alter this expectation. “By virtue of the long-term effect of the Montreal Protocol, significant ozone destruction will no longer occur during the second half of this century,” explains Rex. The Montreal Protocol is an international treaty adopted under the UN umbrella in 1987 to protect the ozone layer and for all practical purposes bans the production of ozone-depleting chlorofluorocarbons (CFCs) worldwide today. CFCs released during prior decades however, will not vanish from the atmosphere until many decades from now. Until that time the fate of the Arctic ozone layer essentially depends on the temperature in the stratosphere at an altitude of around 20 km and is thus linked to the development of earth’s climate.

Contacts at Alfred Wegener Institute

Your contact at the Potsdam Research Unit of the Alfred Wegener Institute is Dr. Markus Rex (tel.: +49 (0)174 311 8070, +49 (0)331 288 2127; e-mail: Markus.Rex@awi.de). Your contact in the Communication and Media Department is Ralf Röchert (tel: +49 (0)471 4831-1680; e-mail: Ralf.Roechert@awi.de). You will find printable pictures at http://www.awi.de.

This is a joint statement of the following institutions. The persons mentioned in each case are also at your disposal as contacts.

Belgium
Hugo De Backer, Royal Meteorological Institute of Belgium, +32 2 3730594, Hugo.DeBacker@meteo.be
Canada
Tom McElroy, Environment Canada, +1 416 739 4630, Tom.McElroy@ec.gc.ca
David W. Tarasick, Air Quality Res. Div., Environ. Canada, +1 416 739-4623, david.tarasick@ec.gc.ca
Kaley A. Walker, Univ. Toronto, Dep. of Physics, +1 416 978 8218, kwalker@atmosp.physics.utoronto.ca
Czech Republic
Karel Vanicek, Solar and Ozone Observatory, Czech Hydromet. Inst., +420 495260352, vanicek@chmi.cz
Denmark
Niels Larsen, Danish Climate Center, Danish Meteorological Institute, +45-3915-7414, nl@dmi.dk
Finland
Rigel Kivi, Arctic Research Center, Finnish Meteorological Institute, +358 405424543, rigel.kivi@fmi.fi
Esko Kyrö, Arctic Research Center, Finnish Meteorological Institute, +358 405527438, esko.kyro@fmi.fi
France
Sophie Godin-Beekmann, Gerard Ancellet, LATMOS CNRS-UPMC, +33 1442747 67 / 62,
sophie.godin-beekmann@latmos.ipsl.fr, gerard.ancellet@latmos.ipsl.fr
Germany
Hans Claude, Wolfgang Steinbrecht, Deutscher Wetterdienst Hohenpeißenberg, +49 8805 954 170 / 172, hans.claude@dwd.de, wolfgang.steinbrecht@dwd.de
Franz-Josef Lübken, Leibniz-Institut für Atmosphärenphysik, +49 38293 68 100, luebken@iap-kborn.de
Greece
Dimitris Balis, Aristotle University of Thessaloniki, +30 2310 998192, balis@auth.gr
Costas Varotsos, University of Athens, +30 210 7276838, covar@phys.uoa.gr
Christos Zerefos, Academy of Athens, +30 210 8832048, zerefos@academyofathens.gr
Great Britain
Neil Harris, European Ozone Research Coordinating Unit, University of Cambridge, +44 1223 311797, Neil.Harris@ozone-sec.ch.cam.ac.uk
Norway
Cathrine Lund Myhre, NILU - Norwegian Institute for Air Research, +47-63898042, clm@nilu.no
Russia
Valery Dorokhov, Central Aerological Observatory , +7 499 206 9370, vdor@starlink.ru
Vladimir Yushkov, Central Aerological Observatory +7 495 408-6150, vladimir@caomsk.mipt.ru
Natalya Tsvetkova, Central Aerological Observatory +7 495 408-6150, nat@caomsk.mipt.ru
Spain
Concepción Parrondo, Manuel Gil , INTA, +34 91 5201564, parrondosc@inta.es, gilm@inta.es
Switzerland
René Stübi, Federal Office of Meteorology and Climatology, MeteoSwiss, +41 26 662 62 29, rene.stubi@meteoswiss.ch
Geir O. Braathen, World Meteorological Organization, +41 22 730 82 35, GBraathen@wmo.int
USA
Ross J. Salawitch, Univ. of Maryland, MD, +1 626 487 5643, rjs@atmos.umd.edu
Francis J. Schmidlin, NASA/GSFC/Wallops Flight Facility, +1 757 824 1618, francis.j.schmidlin@nasa.gov

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and middle latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the seventeen research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Margarete Pauls | idw
Further information:
http://www.awi.de/

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>