Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic Now Traps 25 Percent of World’s Carbon -- But That Could Change

16.10.2009
The arctic could potentially alter the Earth’s climate by becoming a possible source of global atmospheric carbon dioxide. The arctic now traps or absorbs up to 25 percent of this gas but climate change could alter that amount, according to a study published in the November issue of Ecological Monographs.

In their review paper, David McGuire of the U.S. Geological Survey and the University of Alaska at Fairbanks and his colleagues show that the Arctic has been a carbon sink since the end of the last Ice Age, which has recently accounted for between zero and 25 percent, or up to about 800 million metric tons, of the global carbon sink.


This figure shows the mean extent of permafrost in the Arctic, estimated for (a) the years 1990-2000 and (b) the years 2090-2100. In (c), the estimation of loss of permafrost by 2100 is overlaid on estimates for the year 2000. Credit: A. David McGuire, USGS (click on the image to see the full size version)

On average, says McGuire, the Arctic accounts for 10-15 percent of the Earth’s carbon sink. But the rapid rate of climate change in the Arctic – about twice that of lower latitudes – could eliminate the sink and instead, possibly make the Arctic a source of carbon dioxide.

“This study is another example of the important role played by USGS and its partners in providing the scientific research that must be the backbone of any actions related to climate change,” said Secretary of the Interior Ken Salazar.

This figure shows the mean extent of permafrost in the Arctic, estimated for (a) the years 1990-2000 and (b) the years 2090-2100. In (c), the estimation of loss of permafrost by 2100 is overlaid on estimates for the year 2000. Credit: A. David McGuire, USGS (click on the image to see the full size version)

Carbon generally enters the oceans and land masses of the Arctic from the atmosphere and largely accumulates in permafrost, the frozen layer of soil underneath the land’s surface. Unlike active soils, permafrost does not decompose its carbon; thus, the carbon becomes trapped in the frozen soil. Cold conditions at the surface have also slowed the rate of organic matter decomposition, McGuire says, allowing Arctic carbon accumulation to exceed its release.

But recent warming trends could change this balance. Warmer temperatures can accelerate the rate of surface organic matter decomposition, releasing more carbon dioxide into the atmosphere. Of greater concern, says McGuire, is that the permafrost has begun to thaw, exposing previously frozen soil to decomposition and erosion. These changes could reverse the historical role of the Arctic as a sink for carbon dioxide.

“In the short term, warming temperatures could release more Arctic carbon to the atmosphere,” says McGuire. “And with permafrost thawing, there will be more available carbon to release.”

On the scale of a few decades, the thawing permafrost could also result in a more waterlogged Arctic, says McGuire, a situation that could encourage the activity of methane-producing organisms. Currently, the Arctic is a substantial source of methane to the atmosphere: as much as 50 million metric tons of methane are released per year, in comparison to the 400 million metric tons of carbon dioxide the Arctic stores yearly. But methane is a very potent greenhouse gas – about 23 times more effective at trapping heat than carbon dioxide on a 100-year time scale. If the release of Arctic methane accelerates, global warming could increase at much faster rates.

“We don’t understand methane very well, and its releases to the atmosphere are more episodic than the exchanges of carbon dioxide with the atmosphere,” says McGuire. “It’s important to pay attention to methane dynamics because of methane’s substantial potential to accelerate global warming.”

But uncertainties still abound about the response of the Arctic system to climate change. For example, the authors write, global warming may produce longer growing seasons that promote plant photosynthesis, which removes carbon dioxide from the atmosphere. Also, the expansion of shrubs in tundra and the movement of treeline northward could sequester more carbon in vegetation. However, increasingly dry conditions may counteract and overcome these effects. Similarly, dry conditions can lead to increased fire prevalence, releasing even more carbon.

McGuire contends that only specific regional studies can determine which areas are likely to experience changes in response to climate change.

“If the response of the arctic carbon cycle to climate change results in substantial net releases of greenhouse gases, this could compromise proposed mitigation efforts for controlling the carbon cycle,” he says.

The article, Sensitivity of the Carbon Cycle in the Arctic to Climate Change, was published online today in Ecological Monographs. The coordinating lead author is David McGuire, USGS, and the co-authors include internationally renowned scientists from Canada, Germany, Sweden, and the United States. This study was sponsored by the Arctic Monitoring and Assessment Program, the Climate in the Cryosphere Program, and the International Arctic Science Committee.

David McGuire | EurekAlert!
Further information:
http://www.uaf.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>