Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic Sediments Show That 20th Century Warming Is Unlike Natural Variation

26.10.2009
PNAS paper indicates that changes since the middle of the 20th century are unprecedented

The possibility that climate change might simply be a natural variation like others that have occurred throughout geologic time is dimming, according to evidence in a Proceedings of the National Academy of Sciences paper published today.

The research reveals that sediments retrieved by University at Buffalo geologists from a remote Arctic lake are unlike those seen during previous warming episodes.

The UB researchers and their international colleagues were able to pinpoint that dramatic changes began occurring in unprecedented ways after the midpoint of the twentieth century.

"The sediments from the mid-20th century were not all that different from previous warming intervals," said Jason P. Briner, PhD, assistant professor of geology in the UB College of Arts and Sciences. "But after that things really changed. And the change is unprecedented."

The sediments are considered unique because they contain rare paleoclimate information about the past 200,000 years, providing a far longer record than most other sediments in the glaciated portion of the Arctic, which only reveals clues to the past 10,000 years.

"Since much of the Arctic was covered by big ice sheets during the Ice Age, with the most recent glaciations ending around 10,000 years ago, the lake sediment cores people get there only cover the past 10,000 years," said Briner.

"What is unique about these sediment cores is that even though glaciers covered this lake, for various reasons they did not erode it," said Briner, who discovered the lake in the Canadian Arctic while working on his doctoral dissertation. "The result is that we have a really long sequence or archive of sediment that has survived arctic glaciations, and the data it contains is exceptional."

Working with Briner and colleagues at UB who retrieved and analyzed the sediments, the paper's co-authors at the University of Colorado and Queens University, experts in analyzing fossils of bugs and algae, have pooled their expertise to develop the most comprehensive picture to date of how warming variations throughout the past 200,000 years have altered the lake's ecology.

"There are periods of time reflected in this sediment core that demonstrate that the climate was as warm as today," said Briner, "but that was due to natural causes, having to do with well-understood patterns of the Earth's orbit around the sun. The whole ecosystem has now shifted and the ecosystem we see during just the last few decades is different from those seen during any of the past warm intervals."

Yarrow Axford, a research associate at the University of Colorado, and the paper's lead author, noted: "The 20th century is the only period during the past 200 millennia in which aquatic indicators reflect increased warming, despite the declining effect of slow changes in the tilt of the Earth's axis which, under natural conditions, would lead to climatic cooling."

Co-authors with Briner and Axford are Colin A. Cooke and Alexander P. Wolfe of the University of Alberta; Donna R. Francis of the University of Massachusetts; John P. Smol, Cheryl R. Wilson and Neal Michelutti at Queens University; Gifford H. Miller of the University of Colorado and Elizabeth K. Thomas, who did this work at UB for her master's degree in geology.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>