Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic Sediments Show That 20th Century Warming Is Unlike Natural Variation

26.10.2009
PNAS paper indicates that changes since the middle of the 20th century are unprecedented

The possibility that climate change might simply be a natural variation like others that have occurred throughout geologic time is dimming, according to evidence in a Proceedings of the National Academy of Sciences paper published today.

The research reveals that sediments retrieved by University at Buffalo geologists from a remote Arctic lake are unlike those seen during previous warming episodes.

The UB researchers and their international colleagues were able to pinpoint that dramatic changes began occurring in unprecedented ways after the midpoint of the twentieth century.

"The sediments from the mid-20th century were not all that different from previous warming intervals," said Jason P. Briner, PhD, assistant professor of geology in the UB College of Arts and Sciences. "But after that things really changed. And the change is unprecedented."

The sediments are considered unique because they contain rare paleoclimate information about the past 200,000 years, providing a far longer record than most other sediments in the glaciated portion of the Arctic, which only reveals clues to the past 10,000 years.

"Since much of the Arctic was covered by big ice sheets during the Ice Age, with the most recent glaciations ending around 10,000 years ago, the lake sediment cores people get there only cover the past 10,000 years," said Briner.

"What is unique about these sediment cores is that even though glaciers covered this lake, for various reasons they did not erode it," said Briner, who discovered the lake in the Canadian Arctic while working on his doctoral dissertation. "The result is that we have a really long sequence or archive of sediment that has survived arctic glaciations, and the data it contains is exceptional."

Working with Briner and colleagues at UB who retrieved and analyzed the sediments, the paper's co-authors at the University of Colorado and Queens University, experts in analyzing fossils of bugs and algae, have pooled their expertise to develop the most comprehensive picture to date of how warming variations throughout the past 200,000 years have altered the lake's ecology.

"There are periods of time reflected in this sediment core that demonstrate that the climate was as warm as today," said Briner, "but that was due to natural causes, having to do with well-understood patterns of the Earth's orbit around the sun. The whole ecosystem has now shifted and the ecosystem we see during just the last few decades is different from those seen during any of the past warm intervals."

Yarrow Axford, a research associate at the University of Colorado, and the paper's lead author, noted: "The 20th century is the only period during the past 200 millennia in which aquatic indicators reflect increased warming, despite the declining effect of slow changes in the tilt of the Earth's axis which, under natural conditions, would lead to climatic cooling."

Co-authors with Briner and Axford are Colin A. Cooke and Alexander P. Wolfe of the University of Alberta; Donna R. Francis of the University of Massachusetts; John P. Smol, Cheryl R. Wilson and Neal Michelutti at Queens University; Gifford H. Miller of the University of Colorado and Elizabeth K. Thomas, who did this work at UB for her master's degree in geology.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>