Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic sea ice reaches minimum 2011 extent, making it second lowest in satellite record

16.09.2011
The blanket of sea ice that floats on the Arctic Ocean appears to have reached its lowest extent for 2011, the second lowest recorded since satellites began measuring it in 1979, according to the University of Colorado Boulder's National Snow and Ice Data Center.

The Arctic sea ice extent fell to 1.67 million square miles, or 4.33 million square kilometers on Sept. 9, 2011. This year's minimum of 1.67 million square miles is more than 1 million square miles below the 1979-2000 monthly average extent for September -- an area larger than Texas and California combined.


This chart shows the 2011 September minimum of Arctic sea ice extent compared with the median 1979-2000 September minimum measurements. Credit: NSIDC

While this year's September minimum extent was greater than the all-time low in 2007, it remains significantly below the long-term average and well outside the range of natural climate variability, according to scientists involved in the analysis. Most scientists believe the shrinking Arctic sea ice is tied to warming temperatures caused by an increase in human-produced greenhouse gases pumped into Earth's atmosphere.

"Every summer that we see a very low ice extent in September sets us up for a similar situation the following year," said NSIDC Director Mark Serreze, also a professor in CU-Boulder's geography department. "The Arctic sea ice cover is so thin now compared to 30 years ago that it just can't take a hit anymore. This overall pattern of thinning ice in the Arctic in recent decades is really starting to catch up with us."

Serreze said that in 2007, the year of record low Arctic sea ice, there was a "nearly perfect" set-up of specific weather conditions. Winds pushed in more warm air over the Arctic than usual, helping to melt sea ice, and winds also pushed the floating ice chunks together into a smaller area. "It is interesting that this year, the second lowest sea ice extent ever recorded, that we didn't see that kind of weather pattern at all," he said.

The last five years have been the five lowest Arctic sea ice extents recorded since satellite measurements began in 1979, said CU-Boulder's Walt Meier, an NSIDC scientist. "The primary driver of these low sea ice conditions is rising temperatures in the Arctic, and we definitely are heading in the direction of ice-free summers," he said. "Our best estimates now indicate that may occur by about 2030 or 2040."

There still is a chance the sea ice extent could fall slightly due to changing winds or late season melt, said Meier. During the first week of October, CU-Boulder's NSIDC will issue a full analysis of the 2011 results and a comparison to previous years.

NSIDC is part of CU-Boulder's Cooperative Institute for Research in Environmental Sciences -- a joint institute of CU-Boulder and the National Oceanic and Atmospheric Administration headquartered on the CU campus -- and is funded primarily by NASA.

NSIDC's sea ice data come from the Special Sensor Microwave Imager/Sounder sensor on the Defense Meteorological Satellite Program F17 satellite using methods developed at NASA's Goddard Space Flight Center in Greenbelt, Md.

For more information and graphics visit CU-Boulder's NSIDC website at http://nsidc.org/arcticseaicenews/2011/091511.html.

Contact:
Walt Meier, 303-492-6508
Walt@nsidc.org
Mark Serreze, 303-492-2963
serreze@kryos.colorado.edu
Katherine Leitzell, 303-492-1497
leitzell@nsidc.org
Jim Scott. CU media relations, 303-492-3114
Jim.Scott@colorado.edu

Katherine Leitzell | EurekAlert!
Further information:
http://www.colorado.edu
http://nsidc.org/arcticseaicenews/2011/091511.html

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>