Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Arctic sea ice reaches minimum 2011 extent, making it second lowest in satellite record

The blanket of sea ice that floats on the Arctic Ocean appears to have reached its lowest extent for 2011, the second lowest recorded since satellites began measuring it in 1979, according to the University of Colorado Boulder's National Snow and Ice Data Center.

The Arctic sea ice extent fell to 1.67 million square miles, or 4.33 million square kilometers on Sept. 9, 2011. This year's minimum of 1.67 million square miles is more than 1 million square miles below the 1979-2000 monthly average extent for September -- an area larger than Texas and California combined.

This chart shows the 2011 September minimum of Arctic sea ice extent compared with the median 1979-2000 September minimum measurements. Credit: NSIDC

While this year's September minimum extent was greater than the all-time low in 2007, it remains significantly below the long-term average and well outside the range of natural climate variability, according to scientists involved in the analysis. Most scientists believe the shrinking Arctic sea ice is tied to warming temperatures caused by an increase in human-produced greenhouse gases pumped into Earth's atmosphere.

"Every summer that we see a very low ice extent in September sets us up for a similar situation the following year," said NSIDC Director Mark Serreze, also a professor in CU-Boulder's geography department. "The Arctic sea ice cover is so thin now compared to 30 years ago that it just can't take a hit anymore. This overall pattern of thinning ice in the Arctic in recent decades is really starting to catch up with us."

Serreze said that in 2007, the year of record low Arctic sea ice, there was a "nearly perfect" set-up of specific weather conditions. Winds pushed in more warm air over the Arctic than usual, helping to melt sea ice, and winds also pushed the floating ice chunks together into a smaller area. "It is interesting that this year, the second lowest sea ice extent ever recorded, that we didn't see that kind of weather pattern at all," he said.

The last five years have been the five lowest Arctic sea ice extents recorded since satellite measurements began in 1979, said CU-Boulder's Walt Meier, an NSIDC scientist. "The primary driver of these low sea ice conditions is rising temperatures in the Arctic, and we definitely are heading in the direction of ice-free summers," he said. "Our best estimates now indicate that may occur by about 2030 or 2040."

There still is a chance the sea ice extent could fall slightly due to changing winds or late season melt, said Meier. During the first week of October, CU-Boulder's NSIDC will issue a full analysis of the 2011 results and a comparison to previous years.

NSIDC is part of CU-Boulder's Cooperative Institute for Research in Environmental Sciences -- a joint institute of CU-Boulder and the National Oceanic and Atmospheric Administration headquartered on the CU campus -- and is funded primarily by NASA.

NSIDC's sea ice data come from the Special Sensor Microwave Imager/Sounder sensor on the Defense Meteorological Satellite Program F17 satellite using methods developed at NASA's Goddard Space Flight Center in Greenbelt, Md.

For more information and graphics visit CU-Boulder's NSIDC website at

Walt Meier, 303-492-6508
Mark Serreze, 303-492-2963
Katherine Leitzell, 303-492-1497
Jim Scott. CU media relations, 303-492-3114

Katherine Leitzell | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>