Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic river deltas may hold clues to future global climate

19.05.2009
Scientists struggling to understand how Earth's climate will change in the next few decades have neglected a potential treasure trove of information—sediments deposited in the ocean by major Arctic rivers such as the Colville and Mackenzie rivers—according to geoscientists at The University of Texas at Austin and Texas A&M University.

The researchers' study was published in the May 19 edition of Proceedings of the National Academy of Sciences.

Sediments deposited in large river deltas around the world record information about past sea level, productivity and storminess on the ocean margin, climate on the adjacent continents (including temperatures and precipitation) and human factors that affect sediment delivery to the margin (such as dams and levees), among other things. In addition to these climate factors, Arctic sediments, in particular, could contain records of changes on land due to warming, including permafrost temperature and melting of upland glaciers.

Mead Allison, senior research scientist at The University of Texas at Austin's Jackson School of Geosciences and co-author of the study, said Arctic river deltas have been neglected as records of past climate because the far north is a challenging and expensive environment to work in and it only came to be seen as a bellwether for climate change in the last decade or so.

Arctic river deltas are critical to explore, the researchers reason, because the largest changes in climate are projected for the Arctic. Large amounts of carbon are stored in Arctic permafrost. As those soils thaw, rivers will transport much of their organic carbon to the oceans. As global warming speeds up the melting of shorefast ice (ice attached to the shore), it will likely accelerate coastal erosion from storms, providing a further supply of organic carbon to the coastal zone.

Allison described several ways these sediments could advance scientists' understanding of the global climate system.

They could help answer a hotly debated question about the role of river deltas in the global carbon cycle. Scientists don't know whether large river deltas are a net source or a net sink of carbon. Do they store more carbon than they produce? That's a critical question because carbon dioxide is a major greenhouse gas. Large river deltas are the interface between the land and the oceans and they deliver large amounts of carbon carried along in sediments. As humans alter river systems by adding nutrients from fertilizers, damming water for power and diverting water for drinking and farming, they may be shifting the ability of those systems to fix, burn and store carbon.

"It's a glaring gap in our understanding of the global carbon cycle," Allison said. "It's a potential gotcha in the global climate models. Each river system is different, but we have to get a handle on the net effects."

Arctic river deposits could also confirm the existence of natural climate cycles that climate models need to take into account. For example, there is evidence supporting the existence of a climate cycle called the Arctic Oscillation that affects temperatures, precipitation and storminess at high latitudes. This cycle oscillates over several decades. But because there are only about 50 years of high quality climate data from the Arctic, it's hard to determine to what extent changes now being observed are natural or due to human influence. River delta sediments might allow scientists to reconstruct Arctic climate for thousands of years into the past, and possibly confirm this natural baseline.

Finally, these sediments would establish past climate proxies for specific locations that could be monitored in the future to track the changing climate of the Arctic. If it is a region that will experience the biggest climate changes in this century, it will be important to establish how climate is recorded in sediments.

One advantage of studying margin sediments adjacent to large rivers in the Arctic and elsewhere is that they are deposited at a very high rate. This makes it possible to extract information on a year-to-year basis with high resolution.

The paper "Large-river delta-front estuaries as natural "recorders"of global environmental change" appears in the May 19 Proceedings of the National Academy of Sciences. The lead author is Thomas Bianchi, a professor in Texas A&M University's Department of Oceanography who specializes in estuarine and marine systems. The research was funded by NASA, the Department of Energy, the Office of Naval Research and the National Science Foundation.

Mead Allison | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Earth Sciences:

nachricht The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht FotoQuest GO: Citizen science campaign targets land-use change in Austria
19.09.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>