Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic could lose most ice in 30 years

03.04.2009
A nearly ice-free Arctic Ocean in the summer may happen three times sooner than scientists had previously estimated.

A new analysis of computer models coupled with the most recent summer ice measurements indicates that the Arctic might lose most of its ice cover in summer in 30 years.

Scientists don't expect the Arctic to become totally ice free, because ice will remain along northern Canada and Greenland. Powerful winds there sweep across the Arctic Ocean, forcing ice layers to slide on top of each other, building up a very thick ice cover.

"The Arctic is changing faster than anticipated," says James Overland of the National Oceanographic and Atmospheric Administration (NOAA). "It's a combination of natural variability, along with warmer air and sea conditions caused by increased greenhouse gases."

Overland and Muyin Wang of the University of Washington, in Seattle, will publish their findings on April 3 in Geophysical Research Letters, a publication of the American Geophysical Union (AGU).

The amount of the Arctic Ocean covered by ice at the end of summer by 2037 could be only about 1 million square kilometers (about 620,000 square miles.) That's compared to today's ice extent of 4.6 million square kilometers (2.8 million square miles.) So much more open water could be a boon for shipping and for extracting minerals and oil from the seabed, but it could also cause an ecosystem upheaval.

The United Nations Intergovernmental Panel on Climate Change in 2007 assessed what might happen in the Arctic in the future by running 23 global climate models. But Wang, a climate scientist, and Overland, an oceanographer with NOAA's Pacific Marine Environmental Laboratory in Seattle, reasoned that dramatic declines in the extent of ice at the end of summer in 2007 and 2008 called for a more refined approach.

The new projections are based on those six of the 23 models that are most suited for assessing sea ice, according to Wang, the lead author of the study. She and Overland sought models that best matched what has actually happened in recent years. Among the models eliminated were those showing way too little ice or way too much ice compared to conditions that have occurred.

Wang says she and Overland chose models that accurately reflect the difference between summer and winter ice packs. That distinction demonstrates the model's ability to take into account changing amounts of solar radiation. Among the six models fitting the researchers' criteria, three have sophisticated sea-ice physics and dynamics capabilities.

Once the extent of ice at the end of summer drops to 4.6 million square kilometers -- it was actually 4.3 million square kilometers in 2007 and 4.7 million in 2008 -- all six models show rapid sea-ice declines. Averaged together, the models point to a nearly ice-free Arctic in 32 years, with some of the models putting the event as early as 11 years from now.

Maria-Jose Vinas | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>