Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic could lose most ice in 30 years

03.04.2009
A nearly ice-free Arctic Ocean in the summer may happen three times sooner than scientists had previously estimated.

A new analysis of computer models coupled with the most recent summer ice measurements indicates that the Arctic might lose most of its ice cover in summer in 30 years.

Scientists don't expect the Arctic to become totally ice free, because ice will remain along northern Canada and Greenland. Powerful winds there sweep across the Arctic Ocean, forcing ice layers to slide on top of each other, building up a very thick ice cover.

"The Arctic is changing faster than anticipated," says James Overland of the National Oceanographic and Atmospheric Administration (NOAA). "It's a combination of natural variability, along with warmer air and sea conditions caused by increased greenhouse gases."

Overland and Muyin Wang of the University of Washington, in Seattle, will publish their findings on April 3 in Geophysical Research Letters, a publication of the American Geophysical Union (AGU).

The amount of the Arctic Ocean covered by ice at the end of summer by 2037 could be only about 1 million square kilometers (about 620,000 square miles.) That's compared to today's ice extent of 4.6 million square kilometers (2.8 million square miles.) So much more open water could be a boon for shipping and for extracting minerals and oil from the seabed, but it could also cause an ecosystem upheaval.

The United Nations Intergovernmental Panel on Climate Change in 2007 assessed what might happen in the Arctic in the future by running 23 global climate models. But Wang, a climate scientist, and Overland, an oceanographer with NOAA's Pacific Marine Environmental Laboratory in Seattle, reasoned that dramatic declines in the extent of ice at the end of summer in 2007 and 2008 called for a more refined approach.

The new projections are based on those six of the 23 models that are most suited for assessing sea ice, according to Wang, the lead author of the study. She and Overland sought models that best matched what has actually happened in recent years. Among the models eliminated were those showing way too little ice or way too much ice compared to conditions that have occurred.

Wang says she and Overland chose models that accurately reflect the difference between summer and winter ice packs. That distinction demonstrates the model's ability to take into account changing amounts of solar radiation. Among the six models fitting the researchers' criteria, three have sophisticated sea-ice physics and dynamics capabilities.

Once the extent of ice at the end of summer drops to 4.6 million square kilometers -- it was actually 4.3 million square kilometers in 2007 and 4.7 million in 2008 -- all six models show rapid sea-ice declines. Averaged together, the models point to a nearly ice-free Arctic in 32 years, with some of the models putting the event as early as 11 years from now.

Maria-Jose Vinas | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

nachricht NASA spies Tropical Cyclone 08P's formation
23.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>