Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic ice melt could pause in coming decades

11.08.2011
Despite the rapid retreat of Arctic sea ice in recent years, the ice may temporarily stabilize or somewhat expand at times over the next few decades, new research indicates.

A new computer modeling study reinforces previous findings by other research teams that the level of Arctic sea ice loss observed in recent decades cannot be explained by natural causes alone, and that the ice will eventually melt away during summer if the climate continues to warm.

But in an unexpected new result, the research team found that Arctic ice under current climate conditions is as likely to expand as it is to contract for periods of up to about a decade.

"One of the results that surprised us all was the number of computer simulations that indicated a temporary halt to the loss of the ice," says Jennifer Kay, the lead author and a scientist at the National Center for Atmospheric Research (NCAR). "The computer simulations suggest that we could see a 10-year period of stable ice or even an increase in the extent of the ice. Even though the observed ice loss has accelerated over the last decade, the fate of sea ice over the next decade depends not only on human activity but also on climate variability that cannot be predicted."

Kay explains that variations in atmospheric conditions such as wind patterns could, for example, temporarily halt the sea ice loss. Still, the ultimate fate of the ice in a warming world is clear. "When you start looking at longer-term trends, 50 or 60 years, there's no escaping the loss of ice in the summer," Kay says.

The study was published today in the journal Geophysical Research Letters, a publication of the American Geophysical Union.

Kay and her colleagues also ran computer simulations to answer a fundamental question: why did Arctic sea ice melt far more rapidly in the late 20th century than projected by computer models? By analyzing multiple realizations of the 20th century from a single climate model, they attribute approximately half the observed decline to human emissions of greenhouse gases, and the other half to climate variability.

These findings point to climate change and variability working together equally to accelerate the observed sea ice loss during the late 20th century.

Since accurate satellite measurements became available in 1979, the extent of summertime Arctic sea ice has shrunk by about one third. The ice returns each winter, but the extent shrank to a record low in September 2007 and is again extremely low this year, already setting a monthly record low for July. Whereas scientists warned just a few years ago that the Arctic could lose its summertime ice cover by the end of the century, some research has indicated that Arctic summers could be largely ice-free within the next several decades.

To simulate what is happening with the ice, the team used a newly updated version of one of the world's most powerful computer climate models, the Community Climate System Model. The research team first evaluated whether the model was a credible tool for the study. By comparing the computer results with Arctic observations, they verified that, though the model has certain biases, it can capture observed late 20th century sea ice trends and the observed thickness and seasonal variations in the extent of the ice.

Kay and her colleagues then conducted a series of future simulations that looked at how Arctic sea ice was affected both by natural conditions and by the increased level of greenhouse gases in the atmosphere. The computer studies indicated that the year-to-year and decade-to-decade trends in the extent of sea ice are likely to fluctuate increasingly as temperatures warm and the ice thins.

"Over periods up to a decade, both positive and negative trends become more pronounced in a warming world," says NCAR scientist Marika Holland, a co-author of the study. The simulations also indicated that Arctic sea ice is equally likely to expand or contract over short time periods under the climate conditions of the late 20th and early 21st century.

Although the Community Climate System Model simulations provide new insights, the paper cautions that more modeling studies and longer-term observations are needed to better understand the impacts of climate change and weather variability on Arctic ice.

The authors note that it is also difficult to disentangle the variability of weather systems and sea ice patterns from the ongoing impacts of human emissions of greenhouse gases. "The changing Arctic climate is complicating matters," Kay says. "We can't measure natural variability now because, when temperatures warm and the ice thins, the ice variability changes and is not entirely natural."

This research was funded by the National Science Foundation.

Title: "Interannual to multidecadal Arctic sea ice extent trends in a warming world"

Authors: Jennifer E. Kay, Marika M. Holland, and Alexandra Jahn: Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado, USA.

Contact information for the authors: Jennifer Kay, NCAR Scientist: +1 (303) 497-1730, jenkay@ucar.edu

Maria-Jose Vinas | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>