Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic Freshwater Cycle Intensifies, Marks Warming

28.06.2010
The amount of fresh water flowing through the Arctic as snow or rainfall, in rivers and other cycles is increasing, in agreement with model projections under a warming climate, according to a new study by University of Massachusetts Amherst hydrologist Michael Rawlins and colleagues from 18 other institutions in the United States, Norway and Finland.

The multi-year, multi-investigator synthesis of available data caps a five-year effort known as the Freshwater Integration study (FWI), funded by the National Science Foundation, which sought to answer fundamental questions about the Arctic system, foremost of which: Is the Arctic freshwater cycle accelerating or intensifying? Findings appear in the current, online issue of the Journal of Climate.

As Rawlins, manager of the Climate System Research Center at UMass Amherst explains, “The balance of evidence suggests that Arctic freshwater cycle intensification is occurring across the terrestrial Arctic. These observations are consistent with what models have suggested should occur with climatic warming.” Intensification is related to the atmosphere’s ability to hold more moisture as it warms.

However, he adds that though this study used the best available data, because of uncertainties such as sparse observing networks and “considerable variability” in the Arctic freshwater system, confidence in the overall conclusion must be seen as “somewhat limited.” Nevertheless, the study provides an important benchmark.

As the authors point out, “direct observations of the Arctic freshwater cycle are continually being updated and made available as well. Future analysis to update the assessments presented here will be an important contribution to the emerging body of evidence documenting Arctic hydrologic change.”

The analysis, which focused on changes over the past few decades, involved a synthesis of data collected over recent years. Specifically, Rawlins and colleagues found that five of six terrestrial precipitation data sets showed a trend toward increased precipitation, two being statistically significant. Also, all five evapotranspiration (the sum of water evaporated from water bodies and transpired from vegetation) data sets showed a positive trend, of which three were significant. Finally, all five of the Arctic river discharge records showed an increasing trend. These were significant for Eurasia, North America excluding the Hudson Bay drainage and the Arctic as a whole, defined as all land areas that drain to the Arctic Ocean.

The researchers note that, “Among all components, the long-term increase in river discharge from large Eurasian rivers is perhaps the most consistent trend evidencing Arctic freshwater cycle intensification.” Their analysis builds on a groundbreaking 2002 study which found the combined flow of the six largest Eurasian rivers increased by about 7 percent from 1936–1999. Rawlins and colleagues say recent positive trends in North American river flows suggest that riverine intensification “may now be pan-Arctic in extent.”

While the available data show intensification on the terrestrial side, no clear evidence suggests intensification in flows or the amount of freshwater within the Arctic Ocean. However, many processes control ocean freshwater content including circulations which cyclically build up and export the water. Overall, Rawlins notes, the Arctic Ocean is predicted to become fresher as precipitation and river flows to the ocean increase, and as sea ice melts, but available data do not confirm this.

Freshwater cycle intensification could have important implications for processes and cycles not only in the Arctic, but beyond. Changes in terrestrial Arctic hydrology may alter land-surface flows of carbon dioxide and methane, both of which are potent greenhouse gases. And, as Rawlins notes, “Freshening of the Arctic Ocean could potentially slow down the global thermohaline circulation, which is understood to be an integral component of Earth’s climate system.” Thermohaline refers to water temperature and salt concentration, which help to determine sea water density.

Future studies of the Arctic system should benefit greatly from better data sets and models, Rawlins says. “The science is constantly improving,” he notes. “Where we worked with nine models, we'll soon be able to repeat this analysis with twenty or more. And the models are getting more accurate all the time, with improved representations of key physical processes and higher spatial resolutions.”

In particular, as a terrestrial hydrologist, Rawlins is interested to break down the data by season and by region to confirm suspicions about how snowfall increases and recent losses of sea ice may be contributing to the observed freshwater trends.

Janet Lathrop | Newswise Science News
Further information:
http://www.umass.edu/

More articles from Earth Sciences:

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

nachricht Environmental history told by sludge: Global warming lets the dead zones in the Black Sea grow
10.01.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>