Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic Freshwater Cycle Intensifies, Marks Warming

28.06.2010
The amount of fresh water flowing through the Arctic as snow or rainfall, in rivers and other cycles is increasing, in agreement with model projections under a warming climate, according to a new study by University of Massachusetts Amherst hydrologist Michael Rawlins and colleagues from 18 other institutions in the United States, Norway and Finland.

The multi-year, multi-investigator synthesis of available data caps a five-year effort known as the Freshwater Integration study (FWI), funded by the National Science Foundation, which sought to answer fundamental questions about the Arctic system, foremost of which: Is the Arctic freshwater cycle accelerating or intensifying? Findings appear in the current, online issue of the Journal of Climate.

As Rawlins, manager of the Climate System Research Center at UMass Amherst explains, “The balance of evidence suggests that Arctic freshwater cycle intensification is occurring across the terrestrial Arctic. These observations are consistent with what models have suggested should occur with climatic warming.” Intensification is related to the atmosphere’s ability to hold more moisture as it warms.

However, he adds that though this study used the best available data, because of uncertainties such as sparse observing networks and “considerable variability” in the Arctic freshwater system, confidence in the overall conclusion must be seen as “somewhat limited.” Nevertheless, the study provides an important benchmark.

As the authors point out, “direct observations of the Arctic freshwater cycle are continually being updated and made available as well. Future analysis to update the assessments presented here will be an important contribution to the emerging body of evidence documenting Arctic hydrologic change.”

The analysis, which focused on changes over the past few decades, involved a synthesis of data collected over recent years. Specifically, Rawlins and colleagues found that five of six terrestrial precipitation data sets showed a trend toward increased precipitation, two being statistically significant. Also, all five evapotranspiration (the sum of water evaporated from water bodies and transpired from vegetation) data sets showed a positive trend, of which three were significant. Finally, all five of the Arctic river discharge records showed an increasing trend. These were significant for Eurasia, North America excluding the Hudson Bay drainage and the Arctic as a whole, defined as all land areas that drain to the Arctic Ocean.

The researchers note that, “Among all components, the long-term increase in river discharge from large Eurasian rivers is perhaps the most consistent trend evidencing Arctic freshwater cycle intensification.” Their analysis builds on a groundbreaking 2002 study which found the combined flow of the six largest Eurasian rivers increased by about 7 percent from 1936–1999. Rawlins and colleagues say recent positive trends in North American river flows suggest that riverine intensification “may now be pan-Arctic in extent.”

While the available data show intensification on the terrestrial side, no clear evidence suggests intensification in flows or the amount of freshwater within the Arctic Ocean. However, many processes control ocean freshwater content including circulations which cyclically build up and export the water. Overall, Rawlins notes, the Arctic Ocean is predicted to become fresher as precipitation and river flows to the ocean increase, and as sea ice melts, but available data do not confirm this.

Freshwater cycle intensification could have important implications for processes and cycles not only in the Arctic, but beyond. Changes in terrestrial Arctic hydrology may alter land-surface flows of carbon dioxide and methane, both of which are potent greenhouse gases. And, as Rawlins notes, “Freshening of the Arctic Ocean could potentially slow down the global thermohaline circulation, which is understood to be an integral component of Earth’s climate system.” Thermohaline refers to water temperature and salt concentration, which help to determine sea water density.

Future studies of the Arctic system should benefit greatly from better data sets and models, Rawlins says. “The science is constantly improving,” he notes. “Where we worked with nine models, we'll soon be able to repeat this analysis with twenty or more. And the models are getting more accurate all the time, with improved representations of key physical processes and higher spatial resolutions.”

In particular, as a terrestrial hydrologist, Rawlins is interested to break down the data by season and by region to confirm suspicions about how snowfall increases and recent losses of sea ice may be contributing to the observed freshwater trends.

Janet Lathrop | Newswise Science News
Further information:
http://www.umass.edu/

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>