Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic Freshwater Cycle Intensifies, Marks Warming

28.06.2010
The amount of fresh water flowing through the Arctic as snow or rainfall, in rivers and other cycles is increasing, in agreement with model projections under a warming climate, according to a new study by University of Massachusetts Amherst hydrologist Michael Rawlins and colleagues from 18 other institutions in the United States, Norway and Finland.

The multi-year, multi-investigator synthesis of available data caps a five-year effort known as the Freshwater Integration study (FWI), funded by the National Science Foundation, which sought to answer fundamental questions about the Arctic system, foremost of which: Is the Arctic freshwater cycle accelerating or intensifying? Findings appear in the current, online issue of the Journal of Climate.

As Rawlins, manager of the Climate System Research Center at UMass Amherst explains, “The balance of evidence suggests that Arctic freshwater cycle intensification is occurring across the terrestrial Arctic. These observations are consistent with what models have suggested should occur with climatic warming.” Intensification is related to the atmosphere’s ability to hold more moisture as it warms.

However, he adds that though this study used the best available data, because of uncertainties such as sparse observing networks and “considerable variability” in the Arctic freshwater system, confidence in the overall conclusion must be seen as “somewhat limited.” Nevertheless, the study provides an important benchmark.

As the authors point out, “direct observations of the Arctic freshwater cycle are continually being updated and made available as well. Future analysis to update the assessments presented here will be an important contribution to the emerging body of evidence documenting Arctic hydrologic change.”

The analysis, which focused on changes over the past few decades, involved a synthesis of data collected over recent years. Specifically, Rawlins and colleagues found that five of six terrestrial precipitation data sets showed a trend toward increased precipitation, two being statistically significant. Also, all five evapotranspiration (the sum of water evaporated from water bodies and transpired from vegetation) data sets showed a positive trend, of which three were significant. Finally, all five of the Arctic river discharge records showed an increasing trend. These were significant for Eurasia, North America excluding the Hudson Bay drainage and the Arctic as a whole, defined as all land areas that drain to the Arctic Ocean.

The researchers note that, “Among all components, the long-term increase in river discharge from large Eurasian rivers is perhaps the most consistent trend evidencing Arctic freshwater cycle intensification.” Their analysis builds on a groundbreaking 2002 study which found the combined flow of the six largest Eurasian rivers increased by about 7 percent from 1936–1999. Rawlins and colleagues say recent positive trends in North American river flows suggest that riverine intensification “may now be pan-Arctic in extent.”

While the available data show intensification on the terrestrial side, no clear evidence suggests intensification in flows or the amount of freshwater within the Arctic Ocean. However, many processes control ocean freshwater content including circulations which cyclically build up and export the water. Overall, Rawlins notes, the Arctic Ocean is predicted to become fresher as precipitation and river flows to the ocean increase, and as sea ice melts, but available data do not confirm this.

Freshwater cycle intensification could have important implications for processes and cycles not only in the Arctic, but beyond. Changes in terrestrial Arctic hydrology may alter land-surface flows of carbon dioxide and methane, both of which are potent greenhouse gases. And, as Rawlins notes, “Freshening of the Arctic Ocean could potentially slow down the global thermohaline circulation, which is understood to be an integral component of Earth’s climate system.” Thermohaline refers to water temperature and salt concentration, which help to determine sea water density.

Future studies of the Arctic system should benefit greatly from better data sets and models, Rawlins says. “The science is constantly improving,” he notes. “Where we worked with nine models, we'll soon be able to repeat this analysis with twenty or more. And the models are getting more accurate all the time, with improved representations of key physical processes and higher spatial resolutions.”

In particular, as a terrestrial hydrologist, Rawlins is interested to break down the data by season and by region to confirm suspicions about how snowfall increases and recent losses of sea ice may be contributing to the observed freshwater trends.

Janet Lathrop | Newswise Science News
Further information:
http://www.umass.edu/

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>