Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic environment during an ancient bout of natural global warming

28.02.2011
Scientists are unravelling the environmental changes that took place around the Arctic during an exceptional episode of ancient global warming.

Newly published results from a high-resolution study of sediments collected on Spitsbergen represent a significant contribution to this endeavour. The study was led by Dr Ian Harding and Prof John Marshall of the University of Southampton’s School of Ocean and Earth Science (SOES), based at the National Oceanography Centre, Southampton.

Around 56 million years ago there was a period of global warming called the Paleocene–Eocene Thermal Maximum (PETM), during which global sea surface temperatures increased by approximately 5°C.

The warming of the oceans led to profound ecological changes, including the widespread extinction of many types of foraminifera, tiny single-celled organisms with distinctive shells. Plankton that had previously only prospered in tropical and subtropical waters migrated to higher latitudes. Similar changes occurred on the land, with many animals and plants extending their distributions towards the poles.

“Although environmental changes associated with the PETM at low- to mid-latitude settings and high southern latitudes are well documented, we know less about these changes at high northern latitudes,” explained Dr Harding.

Information about the Arctic environment during the PETM has come predominantly from sediment cores drilled from under the pack ice on the Lomonosov Ridge (~ 88°N) by the Integrated Ocean Drilling Program (IODP Site 302-4A). However, these cores do not span the entire PETM and therefore do not provide a complete picture.

“Information from other Arctic sites is needed for a better understanding of PETM environmental conditions, such data can then in turn be used in computer models which will improve our understanding not only of past climatic conditions but also enhance our ability to predict future perturbations,” said Dr Harding.

To help fill this knowledge gap, Dr Harding’s team turned to a site (~78 °N) on Spitsbergen in the high Arctic. Here, 2.5-kilometre-thick sediments span the critical period. During the PETM, the site would have been at around 75 °N, the difference in position being due to the slow movement of tectonic plates over millions of years.

Through analyses of plankton and the chemical and magnetic characteristics of the sediments, they were unambiguously able to identify a 15-metre succession of exposed sediment representing the approximately 170 thousand year PETM event.

At the base of the segment they found the preserved remains of the cyst-forming dinoflagellate Apectodinium augustum, a planktonic species diagnostic of the PETM across the globe. In fact, the species was already present in Spitsbergen before the shift in carbon isotope composition formally marking the onset of the PETM, suggesting that environment change was by then already well underway.

Along with data from other sites, their Arctic evidence suggests not only that sea level began to rise well before the formal onset of the PETM, but also that it peaked about 13,000 years into the period. At the same time, increased surface-water run-off from the land dampened water-column mixing and led to stratification, with an upper freshened layer that overlay denser, more saline seawater beneath.

By carefully comparing their results with those from IODP Site 302-4A to the north, they found evidence for regional differences in the environmental manifestations of the PETM in high northern latitudes. For example, the evidence from the IODP site suggests that the sunlit surface layer of the ocean was often depleted of oxygen, the results from Spitsbergen suggest that oxygen depletion was largely restricted to the bottom waters and sediments. In addition, they found that pollen from flowering plants was scarce, unlike at the IODP site, suggesting that conditions around the Spitsbergen Central Basin may not have been conducive to the growth of flowering plants during the PETM.

“Because this geologically short-lived event is represented by such an expanded section at Spitsbergen by comparison to other deep water sites, this locality has provided us with opportunities for further high-resolution studies of the PETM, which we are currently preparing for publication,” concluded Dr Harding.

The researchers are Ian Harding, Adam Charles , John Marshall, Heiko Pälike, Paul Wilson, Edward Jarvis, Robert Thorne, Emily Morris, Rebecca Moremon, Richard Pearce and Shir Akbari of SOES, and Andrew Roberts of the Australian National University, Canberra.

Preliminary field work was funded by The Millennium Atlas Company Limited, and a second expedition with other members of the palaeo-Arctic Climates and Environments (pACE) group was funded by the Worldwide Universities Network.

Publication:
Harding, I. C., Charles, A. J., Marshall, J. E. A., Pälike, H., Roberts, A. P., Wilson, P. A., Jarvis, E., Thorne, T., Morris, E., Moremon, R., Pearce, R. B. & Akbari, S. Sea-level and salinity fluctuations during the Paleocene–Eocene thermal maximum in Arctic Spitsbergen. Earth Planet. Sci. Lett. (2011).doi:10.1016/j.epsl.2010.12.043

Dr. Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>