Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic climate may be more sensitive to warming than thought

30.06.2010
A new study shows the Arctic climate system may be more sensitive to greenhouse warming than previously thought, and that current levels of Earth's atmospheric carbon dioxide may be high enough to bring about significant, irreversible shifts in Arctic ecosystems.

Led by the University of Colorado at Boulder, the international study indicated that while the mean annual temperature on Ellesmere Island in the High Arctic during the Pliocene Epoch 2.6 to 5.3 million years ago was about 34 degrees Fahrenheit, or 19 degrees Celsius, warmer than today, CO2 levels were only slightly higher than present. The vast majority of climate scientists agree Earth is warming due to increased concentrations of heat-trapping atmospheric gases generated primarily by human activities like fossil fuel burning and deforestation.

The team used three independent methods of measuring the Pliocene temperatures on Ellesmere Island in Canada's High Arctic. They included measurements of oxygen isotopes found in the cellulose of fossil trees and mosses that reveal temperatures and precipitation levels tied to ancient water, an analysis of the distribution of lipids in soil bacteria which correlate with temperature, and an inventory of ancient Pliocene plant groups that overlap in range with contemporary vegetation.

"Our findings indicate that CO2 levels of approximately 400 parts per million are sufficient to produce mean annual temperatures in the High Arctic of approximately 0 degrees Celsius (32 degrees F)," Ballantyne said. "As temperatures approach 0 degrees Celsius, it becomes exceedingly difficult to maintain permanent sea and glacial ice in the Arctic. Thus current levels of CO2 in the atmosphere of approximately 390 parts per million may be approaching a tipping point for irreversible ice-free conditions in the Arctic."

A paper on the subject is being published in the July issue of the journal Geology. Co-authors included David Greenwood of Brandon University in Manitoba, Canada, Jaap Sinninghe Damste of the Royal Netherlands Institute for Sea Research, Adam Csank of the University of Arizona, Natalia Rybczynski of the Canadian Museum of Nature in Ottawa and Jaelyn Eberle, curator of fossil vertebrates at the University of Colorado Museum of Natural History and an associate professor in the geological sciences department.

Arctic temperatures have risen by about 1.8 degrees F, or 1 degree C, in the past two decades in response to anthropogenic greenhouse warming, a trend expected to continue in the coming decades and centuries, said Ballantyne. Greenhouse gases in the atmosphere have risen from about 280 parts per million during the pre-industrial era on Earth to about 390 parts per million today.

During the Pliocene, Ellesmere Island hosted forests of larch, dwarf birch and northern white cedar trees, as well as mosses and herbs, including cinquefoils. The island also was home to fish, frogs and now extinct mammals that included tiny deer, ancient relatives of the black bear, three-toed horses, small beavers, rabbits, badgers and shrews. Because of the high latitude, the Ellesmere Island site on the Strathcona Fiord was shrouded by darkness six months out of the year, said Rybczynski.

Fossils are often preserved in a process known as permineralization, in which mineral deposits form internal casts of organisms. But at the Ellesmere Island site known as the "Beaver Pond site," organic materials -- including trees, plants and mosses -- have been "mummified" in peat deposits, allowing the researchers to conduct detailed, high-quality analyses, said Eberle.

Ballantyne said the high level of preservation of trees and mosses at Ellesmere Island allowed the team to measure the ratio of oxygen isotopes in plant cellulose, providing information on water absorbed from precipitation during the Pliocene and which yielded estimates of past surface temperatures. The team also compared data on the width of tree rings in larch trees at the Beaver Pond site to trees at lower latitudes today to help them estimate past temperatures and precipitation levels.

The researchers also analyzed the distribution of ancient membrane lipids from soil bacteria known as tetraethers, which correlate to temperature. The chemical structure of the fossilized tetraethers makes them highly sensitive to both temperature and acidity, or pH, said Ballantyne.

The last line of evidence put forward by the CU-Boulder-led team was a comparison of Pliocene ancient vegetation at the site with vegetation present today, providing a clear "climate window" showing the overlap of the two time periods. "The results of the three independent temperature proxies are remarkably consistent," said Eberle. "We essentially were able to 'read' the vegetation in order to estimate air temperatures in the Pliocene."

Today, Ellesmere Island is a polar desert that features tundra, permafrost, ice sheets, sparse vegetation and a few small mammals. Temperatures range from roughly minus 37 degrees F, or minus 38 degrees C, in winter to 48 degrees F, or 9 degrees C, in summer. The region is one of the coldest, driest environments on Earth.

"Our findings are somewhat disconcerting regarding the temperatures and greenhouse gas levels during the Pliocene," said Eberle. "We already are seeing evidence of both mammals and birds moving northward as the climate warms, and I can't help but wonder if the Arctic is headed toward conditions similar to those that existed during the Pliocene."

Elevated Arctic temperatures during the Pliocene -- which occurred shortly before Earth plunged into an ice age about 2.5 million years ago -- are thought to have been driven by the transfer of heat to the polar regions and perhaps by decreased reflectivity of sunlight hitting the Arctic due to a lack of ice, said Ballantyne. One big question is why the Arctic was so sensitive to warming during this period, he said.

Multiple feedback mechanisms have been proposed to explain the amplification of Arctic temperatures, including the reflectivity strength of the sun on Arctic ice and changes in vegetation seasonal cloud cover, said Ballantyne. "I suspect that it is the interactions between these different feedback mechanisms that ultimately produce the warming temperatures in the Arctic."

In 2009, CU-Boulder's National Snow and Ice Data Center showed the September Arctic sea ice extent was 649,000 square miles, or 1,680,902 square kilometers, below the 1979-2000 average, and is declining at a rate of 11.2 percent per decade. Some climate change experts are forecasting that the Arctic summers will become ice-free summers within a decade or two.

In addition to its exceptional preservation of fossil wood, plants, insects and mollusks, the Beaver Pond site on Ellesmere Island is the only reported Pliocene fossil site in the High Arctic to yield vertebrate remains, said Rybczynski.

Eberle said there is high concern by scientists over a proposal to mine coal on Ellesmere Island near the Beaver Pond site by WestStar Resources Inc. headquartered in Vancouver, British Columbia. "Paleontological sites like the Beaver Pond site are unique and extremely valuable resources that are of international importance," said Eberle. "Our concern is that coal mining activities could damage such sites and they will be lost forever."

The study was funded by the National Science Foundation, the Natural Science and Engineering Research Council in Canada, the Netherlands Organization for Scientific Research and the European Research Council.

Contact: Ashley Ballantyne,
Ashley.Ballantyne@colorado.edu
Jaelyn Eberle, 303-492-8069
Jaelyn.Eberle@colorado.edu
Jim Scott, 303-492-3114
Jim.Scott@colorado.edu

Ashley Ballantyne | EurekAlert!
Further information:
http://www.colorado.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>