Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic climate under greenhouse conditions in the Late Cretaceous

13.07.2009
Arctic climate in the Late Cretaceous

New evidence for ice-free summers with intermittent winter sea ice in the Arctic Ocean during the Late Cretaceous ¡V a period of greenhouse conditions - gives a glimpse of how the Arctic is likely to respond to future global warming.

Records of past environmental change in the Arctic should help predict its future behaviour. The Late Cretaceous, the period between 100 and 65 million years ago leading up to the extinction of the dinosaurs, is crucial in this regard because levels of carbon dioxide (CO2) were high, driving greenhouse conditions. But scientists have disagreed about the climate at this time, with some arguing for low Arctic late Cretaceous winter temperatures (when sunlight is absent during the Polar night) as against more recent suggestions of a somewhat milder 15¢XC mean annual temperature.

Writing in Nature, Dr Andrew Davies and Professor Alan Kemp of the University of Southampton's School of Ocean and Earth Science based at the National Oceanography Centre, Southampton, along with Dr Jennifer Pike of Cardiff University take this debate a step forward by presenting the first seasonally resolved Cretaceous sedimentary record from the Alpha Ridge of the Arctic Ocean.

The scientists analysed the remains of diatoms ¡V tiny free-floating plant-like organisms - preserved in late Cretaceous marine sediments. In modern oceans, diatoms play a dominant role in the 'biological carbon pump' by which carbon dioxide is drawn down from the atmosphere through photosynthesis and a proportion of it exported to the deep ocean. Unfortunately, the role of diatoms in the Cretaceous oceans has until now been unclear, in part because they are often poorly preserved in sediments.

But the researchers struck lucky. "With remarkable serendipity," they explain, " successive US and Canadian expeditions that occupied floating ice islands above the Alpha Ridge of the Arctic Ocean, recovered cores containing shallow buried upper Cretaceous diatom ooze with superbly preserved diatoms." This has allowed them to conduct a detailed study of the diatom fossils using sophisticated electron microscopy techniques. In the modern ocean, scientists use floating sediment traps to collect and study settling material. These electron microscope techniques that have been pioneered by Professor Kemp's group at Southampton have unlocked a 'palaeo-sediment trap' to reveal information about Late Cretaceous environmental conditions.

They find that the most informative sediment core samples display a regular alternation of microscopically thin layers composed of two distinctly different diatom assemblages, reflecting seasonal changes. Their analysis clearly demonstrates that seasonal blooming of diatoms was not related to the upwelling of nutrients, as has been previously suggested. Rather, production occurred within a stratified water column, indicative of ice-free summers. These summer blooms comprised specially adapted species resembling those of the modern North Pacific Subtropical Gyre, or preserved in relatively recent organically rich Mediterranean sediments called 'sapropels'.

The sheer number of diatoms found in the Late Cretaceous sediment cores indicates exceptional abundances equalling modern values for the most productive areas of the Southern Ocean. "This Cretaceous production, dominated by diatoms adapted to stratified conditions of the polar summer may also be a pointer to future trends in the modern ocean," say the researchers: "With increasing CO2 levels and global warming giving rise to increased ocean stratification, this style of (marine biological) production may become of increasing importance."

However, thin accumulations of earthborn sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, a finding that supports "a wide body of evidence for low Arctic late Cretaceous winter temperatures rather than recent suggestions of a 15„aC mean annual temperature at this time." The size distribution of clay and sand grains in the sediment points to the formation of sea ice in shallow coastal seas during autumn storms but suggests the absence of larger drop-stones suggests that the winters, although cold, were not cold enough to support thick glacial ice or large areas of anchored ice.

Commenting on the findings, Professor Kemp said: "Although seasonally-resolved records are rarely preserved, our research shows that they can provide a unique window into past Earth system behaviour on timescales immediately comparable and relevant to those of modern concern."

Contact information:

For more information contact the NOCS Press Officer Dr Rory Howlett on +44 (0)23 8059 8490 Email: r.howlett@noc.soton.ac.uk

Images are available from the NOCS Press Office (Tel. 023 8059 6100).

Scientist contact
Professor Alan Kemp: email aesk@noc.soton.ac.uk; telephone +44 (0) 23 8059 2788
Publication:
Davies, A., Kemp, A. S. & Pike, J. Late Cretaceous seasonal ocean variability from the Arctic. Nature 460, 254-258 (9 July 2009).

http://www.nature.com/nature/journal/v460/n7252/full/nature08141.html

The research was supported by the Natural Environment Research Council.

The National Oceanography Centre, Southampton is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The National Oceanography Centre, Southampton is a collaboration between the University of Southampton and the Natural Environment Research Council. The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>