Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Archeologists Investigate Ice Age Hominins Adaptability to Climate Change

18.11.2011
Complex computational modeling provides clues to Neanderthal extinction

Computational modeling that examines evidence of how hominin groups evolved culturally and biologically in response to climate change during the last Ice Age also bears new insights into the extinction of Neanderthals. Details of the complex modeling experiments conducted at Arizona State University and the University of Colorado Denver will be published in the December issue of the journal Human Ecology, available online Nov. 17.

“To better understand human ecology, and especially how human culture and biology co-evolved among hunter-gatherers in the Late Pleistocene of Western Eurasia (ca. 128,000-11,500 years ago) we designed theoretical and methodological frameworks that incorporated feedback across three evolutionary systems: biological, cultural and environmental,” said Michael Barton, a pioneer in the area of archaeological applications of computational modeling at Arizona State University.

“One scientifically interesting result of this research, which studied culturally and environmentally driven changes in land-use behaviors, is that it shows how Neanderthals could have disappeared not because they were somehow less fit than all other hominins who existed during the last glaciation, but because they were as behaviorally sophisticated as modern humans,” said Barton, who is lead author of the published findings.

The paper “Modeling Human Ecodynamics and Biocultural Interactions in the Late Pleistocene of Western Eurasia” is co-authored by Julien Riel-Salvatore, an assistant professor of anthropology at the University of Colorado Denver; John Martin “Marty” Anderies, an associate professor of computational social science at ASU in the School of Human Evolution and Social Change and the School of Sustainability; and Gabriel Popescu, an anthropology doctoral student in the School of Human Evolution and Social Change at ASU.

“It’s been long believed that Neanderthals were outcompeted by fitter modern humans and they could not adapt,” said Riel-Salvatore. “We are changing the main narrative. Neanderthals were just as adaptable and in many ways, simply victims of their own success.”

The interdisciplinary team of researchers used archeological data to track behavioral changes in Western Eurasia over a period of 100,000 years and showed that human mobility increased over time, probably in response to environmental change. According to Barton, the last Ice Age saw hunter-gathers, including both Neanderthals and the ancestors of modern humans, range more widely across Eurasia searching for food during a major shift in the Earth’s climate.

The scientists utilized computer modeling to explore the evolutionary consequences of those changes, including how changes in the movements of Neanderthals and modern humans caused them to interact – and interbreed – more often.

According to Riel-Salvatore, the study offered further evidence that Neanderthals were more flexible and resourceful than previously assumed.

“Neanderthals had proven that they could roll with the punches and when they met the more numerous modern humans, they adapted again,” Riel-Salvatore said. “But modern humans probably saw the Neanderthals as possible mates. As a result, over time, the Neanderthals died out as a physically recognizable population.”

To reach their conclusion, the researchers ran a computer program for the equivalent of 1,500 generations showing that as Neanderthals and modern humans expanded their yearly ranges, the Neanderthals were slowly absorbed by more numerous modern humans until they had disappeared as a recognizable population.

“We tested the modeling results against the empirical archaeological record and found that there is evidence that Neanderthals, and moderns, did adapt their behaviors in the way in which we modeled,” explained Barton. “Moreover, the modeling predicts the kind of low-level genetic admixture of Neanderthal genes that are being found in the newest genetic studies just now being published.

“In other words, successful behavioral adaptations to severe environmental conditions made Neanderthals, and other non-moderns about whom we know little, vulnerable to biological extinction, but at the same time, ensured they made a genetic contribution to modern populations,” Barton said.

The authors noted that “the methods we illustrate here offer a robust, new framework in which researchers can begin to examine the effects that such invisible characteristics could have on the observable record.”

“The kind of modeling we did in this research is very new in paleoanthropology, as is the continental scope of the archaeological analysis we used to test the model results,” noted Barton.

“However, such computational modeling can refine our understanding of long-term human impact on the environment that can help inform land-use decisions for our future,” said Barton, who also is co-director of ASU’s Center for Social Dynamics and Complexity, which leverages the emerging field of complex systems to foster interdisciplinary research on fundamental questions of social life.

The research presented in Human Ecology was supported in part by the National Science Foundation, a Fulbright Senior Research Fellowship and a Fulbright Graduate Student Fellowship.

REFERENCE:
Barton CM et al. (2011) Modeling Human Ecodynamics and Biocultural Interactions in the Late Pleistocene of Western Eurasia. Human Ecology. DOI 10.1007/s10745-011-9433-8
About Arizona State University
Arizona State University is the largest public research university in the United States under a single administration, with total student enrollment of more than 72,000 in metropolitan Phoenix, the nation’s sixth-largest city. ASU is creating a new model for American higher education, an unprecedented combination of academic excellence, entrepreneurial energy and broad access. Its research is inspired by real world application, blurring the boundaries that traditionally separate academic disciplines. ASU champions intellectual and cultural diversity, and welcomes students from all 50 states and more than 100 nations across the globe. More at http://newamericanuniversity.asu.edu.
About the University of Colorado Denver
The University of Colorado Denver offers more than 120 degrees and programs in 13 schools and colleges and serves more than 28,000 students. CU Denver is located on the Denver Campus and the Anschutz Medical Campus in Aurora, Colo. For more information, visit the CU Denver Newsroom, http://www.ucdenver.edu/about/newsroom/Pages/Newsroom.aspx.
SOURCES:
Arizona State University (www.asu.edu)
C. Michael Barton, Michael.Barton@asu.edu
University of Colorado Denver (www.ucdenver.edu)
Julien Riel-Salvatore, julien.riel-salvatore@ucdenver.edu
MEDIA CONTACTS:
Arizona State University
Carol Hughes, carol.hughes@asu.edu
480-965-6375 direct line | 480-254-3753 cell
University of Colorado Denver
David Kelly, david.kelly@ucdenver.edu
303-315-6374 direct line
Journal Human Ecology, published by Springer (www.springer.com)
Joan Robinson, Joan.Robinson@springer.com
+49-6221-4878130 (Germany)

Carol Hughes | Newswise Science News
Further information:
http://www.asu.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>