Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Archeologists Investigate Ice Age Hominins Adaptability to Climate Change

18.11.2011
Complex computational modeling provides clues to Neanderthal extinction

Computational modeling that examines evidence of how hominin groups evolved culturally and biologically in response to climate change during the last Ice Age also bears new insights into the extinction of Neanderthals. Details of the complex modeling experiments conducted at Arizona State University and the University of Colorado Denver will be published in the December issue of the journal Human Ecology, available online Nov. 17.

“To better understand human ecology, and especially how human culture and biology co-evolved among hunter-gatherers in the Late Pleistocene of Western Eurasia (ca. 128,000-11,500 years ago) we designed theoretical and methodological frameworks that incorporated feedback across three evolutionary systems: biological, cultural and environmental,” said Michael Barton, a pioneer in the area of archaeological applications of computational modeling at Arizona State University.

“One scientifically interesting result of this research, which studied culturally and environmentally driven changes in land-use behaviors, is that it shows how Neanderthals could have disappeared not because they were somehow less fit than all other hominins who existed during the last glaciation, but because they were as behaviorally sophisticated as modern humans,” said Barton, who is lead author of the published findings.

The paper “Modeling Human Ecodynamics and Biocultural Interactions in the Late Pleistocene of Western Eurasia” is co-authored by Julien Riel-Salvatore, an assistant professor of anthropology at the University of Colorado Denver; John Martin “Marty” Anderies, an associate professor of computational social science at ASU in the School of Human Evolution and Social Change and the School of Sustainability; and Gabriel Popescu, an anthropology doctoral student in the School of Human Evolution and Social Change at ASU.

“It’s been long believed that Neanderthals were outcompeted by fitter modern humans and they could not adapt,” said Riel-Salvatore. “We are changing the main narrative. Neanderthals were just as adaptable and in many ways, simply victims of their own success.”

The interdisciplinary team of researchers used archeological data to track behavioral changes in Western Eurasia over a period of 100,000 years and showed that human mobility increased over time, probably in response to environmental change. According to Barton, the last Ice Age saw hunter-gathers, including both Neanderthals and the ancestors of modern humans, range more widely across Eurasia searching for food during a major shift in the Earth’s climate.

The scientists utilized computer modeling to explore the evolutionary consequences of those changes, including how changes in the movements of Neanderthals and modern humans caused them to interact – and interbreed – more often.

According to Riel-Salvatore, the study offered further evidence that Neanderthals were more flexible and resourceful than previously assumed.

“Neanderthals had proven that they could roll with the punches and when they met the more numerous modern humans, they adapted again,” Riel-Salvatore said. “But modern humans probably saw the Neanderthals as possible mates. As a result, over time, the Neanderthals died out as a physically recognizable population.”

To reach their conclusion, the researchers ran a computer program for the equivalent of 1,500 generations showing that as Neanderthals and modern humans expanded their yearly ranges, the Neanderthals were slowly absorbed by more numerous modern humans until they had disappeared as a recognizable population.

“We tested the modeling results against the empirical archaeological record and found that there is evidence that Neanderthals, and moderns, did adapt their behaviors in the way in which we modeled,” explained Barton. “Moreover, the modeling predicts the kind of low-level genetic admixture of Neanderthal genes that are being found in the newest genetic studies just now being published.

“In other words, successful behavioral adaptations to severe environmental conditions made Neanderthals, and other non-moderns about whom we know little, vulnerable to biological extinction, but at the same time, ensured they made a genetic contribution to modern populations,” Barton said.

The authors noted that “the methods we illustrate here offer a robust, new framework in which researchers can begin to examine the effects that such invisible characteristics could have on the observable record.”

“The kind of modeling we did in this research is very new in paleoanthropology, as is the continental scope of the archaeological analysis we used to test the model results,” noted Barton.

“However, such computational modeling can refine our understanding of long-term human impact on the environment that can help inform land-use decisions for our future,” said Barton, who also is co-director of ASU’s Center for Social Dynamics and Complexity, which leverages the emerging field of complex systems to foster interdisciplinary research on fundamental questions of social life.

The research presented in Human Ecology was supported in part by the National Science Foundation, a Fulbright Senior Research Fellowship and a Fulbright Graduate Student Fellowship.

REFERENCE:
Barton CM et al. (2011) Modeling Human Ecodynamics and Biocultural Interactions in the Late Pleistocene of Western Eurasia. Human Ecology. DOI 10.1007/s10745-011-9433-8
About Arizona State University
Arizona State University is the largest public research university in the United States under a single administration, with total student enrollment of more than 72,000 in metropolitan Phoenix, the nation’s sixth-largest city. ASU is creating a new model for American higher education, an unprecedented combination of academic excellence, entrepreneurial energy and broad access. Its research is inspired by real world application, blurring the boundaries that traditionally separate academic disciplines. ASU champions intellectual and cultural diversity, and welcomes students from all 50 states and more than 100 nations across the globe. More at http://newamericanuniversity.asu.edu.
About the University of Colorado Denver
The University of Colorado Denver offers more than 120 degrees and programs in 13 schools and colleges and serves more than 28,000 students. CU Denver is located on the Denver Campus and the Anschutz Medical Campus in Aurora, Colo. For more information, visit the CU Denver Newsroom, http://www.ucdenver.edu/about/newsroom/Pages/Newsroom.aspx.
SOURCES:
Arizona State University (www.asu.edu)
C. Michael Barton, Michael.Barton@asu.edu
University of Colorado Denver (www.ucdenver.edu)
Julien Riel-Salvatore, julien.riel-salvatore@ucdenver.edu
MEDIA CONTACTS:
Arizona State University
Carol Hughes, carol.hughes@asu.edu
480-965-6375 direct line | 480-254-3753 cell
University of Colorado Denver
David Kelly, david.kelly@ucdenver.edu
303-315-6374 direct line
Journal Human Ecology, published by Springer (www.springer.com)
Joan Robinson, Joan.Robinson@springer.com
+49-6221-4878130 (Germany)

Carol Hughes | Newswise Science News
Further information:
http://www.asu.edu

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Rapid environmental change makes species more vulnerable to extinction

19.10.2017 | Life Sciences

Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens

19.10.2017 | Interdisciplinary Research

Fossil coral reefs show sea level rose in bursts during last warming

19.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>