Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Aquifers suffocate when river beds silt up

In the course of the last few decades, the oxygen concentration levels in aquifers in the Swiss Plateau have dropped irregularly.

Results of the National Research Programme "Sustainable Water Management” (NRP 61) suggest that the irregular decrease might be related to various degrees of silting in watercourses.

A significant proportion of the water we use comes from aquifers that are fed by infiltration along watercourses. River water temperatures have been rising regularly for several decades. By analysing data from municipal pumping stations, the Eawag researchers Simon Figura, David Livingstone and Rolf Kipfer have observed that this trend also extends to groundwater, where the average temperature increase is 0.3 to 0.6°C every ten years.

Sawtooth decrease
The increase in groundwater temperature is probably having a negative impact on the concentration of dissolved oxygen in ground water by encouraging biological activity and therefore oxygen consumption. At the same time, it is reducing the solubility of the oxygen in the water.

A new analysis by the researchers now confirms that there is a trend towards lower levels of dissolved oxygen. As opposed to water temperatures, this decrease is not continuous but follows a sawtooth pattern: it is regularly interrupted by sudden increases that cannot be solely due to temperature.

By analysing the variations in water flow rate and the pumping volumes, the researchers have developed a new hypothesis: high river discharge and high pumping volumes lead to better river bed infiltration. This, in turn, leads to a swift increase in the oxygen concentration. However, it seems that this only happens after extreme spates that sweep away the silt on river beds. The spates thus clean the natural filter formed by river beds, which facilitates greater renewed infiltration and reoxygenation of the groundwater.

This hypothesis on the effects of the removal of riverbed silting is supported by field observations. During the 1970s, a layer of zebra mussels approximately five centimetres thick formed on the bed of the Rhine near to one of the pumping stations studied by the researchers. Several years later, divers noticed that the layer was no longer there. For this period, measurements indicate a clear increase in dissolved oxygen concentrations in aquifers.

What does the future hold?
Climate forecasts for the 21st century predict an increase in extreme weather. Scorching summers such as that experienced in 2003 are likely to become more frequent. Some aquifers became anoxic in 2003. One of the major consequences of this was the solubilisation of iron and manganese particles, which precipitated out of the water in pumping stations, where they negatively affected the operation of the pumping wells. However, there should also be more spates to clean river beds and encourage groundwater oxygenation. The researchers thus expect the slow decline in oxygen levels to continue, but believe that the spates as well as high discharge and high pumping volumes will prevent continuous aquifer anoxia.
(*) Simon Figura, David Livingstone, and Rolf Kipfer (2013). Competing controls on groundwater oxygen concentrations revealed in multidecadal time-series from riverbank filtration sites. Water Resources Re-search. DOI: 10.1002/2013WR013750

(Available to journalists in PDF format from the SNSF:

Simon Figura
Überlandstrasse 133
CH-8600 Dübendorf
Tel.: +41 58 765 55 10
National Research Programme "Sustainable Water Management" (NRP 61)
The National Research Programme “Sustainable Water Management” (NRP 61) develops scientific principles and methods for the sustainable management of water resources, which are under increasing pressure. NRP 61 explores the effects of climate and social changes on these resources and identifies the risks and future conflicts associated with their use. NRP 61 operates with CHF 12 million for a research duration of four years. Website of NRP 61 "Sustainable Water Management":

Weitere Informationen:

Medien - Abteilung Kommunikation | idw
Further information:

More articles from Earth Sciences:

nachricht Jacobs University supports new mapping of Mars, Mercury and the Moon
21.03.2018 | Jacobs University Bremen gGmbH

nachricht Thawing permafrost produces more methane than expected
20.03.2018 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Make way for the mini flying machines

21.03.2018 | Life Sciences

Taming chaos: Calculating probability in complex systems

21.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>