Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Appearance of Night-Shining Clouds Has Increased


First spotted in 1885, silvery blue clouds sometimes hover in the night sky near the poles, appearing to give off their own glowing light. Known as noctilucent clouds, this phenomenon began to be sighted at lower and lower latitudes -- between the 40th and 50th parallel -- during the 20th century, causing scientists to wonder if the region these clouds inhabit had indeed changed -- information that would tie in with understanding the weather and climate of all Earth.

A NASA mission called Aeronomy of Ice in the Mesosphere, or AIM, was launched in 2007 to observe noctilucent clouds, but it currently only has a view of the clouds near the poles.

Night-shining, or noctilucent clouds on July 3, 2011, in Lock Leven, Fife, Scotland.

Image Credit: Courtesy of Adrian Maricic

NASA's Aeronomy of Ice in the Mesosphere, or AIM, mission captured this image of noctilucent clouds over the poles in 2010. By compiling data from several missions at once, researchers have now created a record of the clouds at lower latitudes as well.

Image Credit: NASA/AIM

Now scientists have gathered information from several other missions, past and present, and combined it with computer simulations to systematically show that the presence of these bright shining clouds have indeed increased in areas between 40 and 50 degrees north latitude, a region which covers the northern third of the United Sates and the lowest parts of Canada.

The research was published online in the Journal of Geophysical Research: Atmospheres on March 18, 2014.

"Noctilucent clouds occur at altitudes of 50 miles above the surface -- so high that they can reflect light from the sun back down to Earth," said James Russell, an atmospheric and planetary scientist at Hampton University in Hampton, Va., and first author on the paper.

"AIM and other research has shown that in order for the clouds to form, three things are needed:  very cold temperatures, water vapor and meteoric dust. The meteoric dust provides sites that the water vapor can cling to until the cold temperatures cause water ice to form." 

To study long-term changes in noctilucent clouds, Russell and his colleagues used historical temperature and water vapor records and a validated model to translate this data into information on the presence of the clouds.

They used temperature data from 2002 to 2011 from NASA's Thermosphere Ionosphere Mesosphere Energetics and Dynamics, or TIMED, mission and water vapor data from NASA's Aura mission from 2005 to 2011. They used a model previously developed by Mark Hervig, a co-author on the paper at GATS, Inc., in Driggs, Idaho.

The team tested the model by comparing its output to observations from the Osiris instrument on the Swedish Odin satellite, which launched in 2001, and the SHIMMER instrument on the U.S. Department of Defense STPSat-1 mission, both of which observed low level noctilucent clouds over various time periods during their flights. The output correlated extremely well to the actual observations, giving the team confidence in their model.

The model showed that the occurrence of noctilucent clouds had indeed increased from 2002 to 2011. These changes correlate to a decrease in temperature at the peak height where noctilucent clouds exist in the atmosphere. Temperatures at this height do not match temperatures at lower levels – indeed, the coldest place in the atmosphere is at this height during summertime over the poles – but a change there certainly does raise questions about change in the overall climate system.

Russell and his team will research further to determine if the noctilucent cloud frequency increase and accompanying temperature decrease over the 10 years could be due to a reduction in the sun’s energy and heat, which naturally occurred as the solar output went from solar maximum in 2002 to solar minimum in 2009.

"As the sun goes to solar minimum, the solar heating of the atmosphere decreases, and a cooling trend would be expected," said Russell.

NASA's Goddard Space Flight Center in Greenbelt, Md. manages the TIMED mission for the agency's Science Mission Directorate at NASA Headquarters in Washington. The spacecraft was built by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.

Related Links:

› TIMED mission
› Noctilucent clouds and AIM mission

Karen C. Fox
NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | Eurek Alert!

Further reports about: AIM Flight Greenbelt Mesosphere NASA STPSat-1 Space atmosphere clouds decrease observations satellite spacecraft temperature

More articles from Earth Sciences:

nachricht USGS projects large loss of Alaska permafrost by 2100
01.12.2015 | United States Geological Survey

nachricht Climate Can Grind Mountains Faster Than They Can Be Rebuilt
01.12.2015 | University of Florida

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How do Landslides control the weathering of rocks?

Chemical weathering in mountains depends on the process of erosion.

Chemical weathering of rocks over geological time scales is an important control on the stability of the climate. This weathering is, in turn, highly dependent...

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

All Focus news of the innovation-report >>>



Event News

European Geosciences Union meeting: Media registration now open (EGU 2016 media advisory 1)

01.12.2015 | Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Latest News

USGS projects large loss of Alaska permafrost by 2100

01.12.2015 | Earth Sciences

New study reveals what's behind a tarantula's blue hue

01.12.2015 | Life Sciences

Climate Can Grind Mountains Faster Than They Can Be Rebuilt

01.12.2015 | Earth Sciences

More VideoLinks >>>