Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Appearance of Night-Shining Clouds Has Increased

11.04.2014

First spotted in 1885, silvery blue clouds sometimes hover in the night sky near the poles, appearing to give off their own glowing light. Known as noctilucent clouds, this phenomenon began to be sighted at lower and lower latitudes -- between the 40th and 50th parallel -- during the 20th century, causing scientists to wonder if the region these clouds inhabit had indeed changed -- information that would tie in with understanding the weather and climate of all Earth.

A NASA mission called Aeronomy of Ice in the Mesosphere, or AIM, was launched in 2007 to observe noctilucent clouds, but it currently only has a view of the clouds near the poles.


Night-shining, or noctilucent clouds on July 3, 2011, in Lock Leven, Fife, Scotland.

Image Credit: Courtesy of Adrian Maricic


NASA's Aeronomy of Ice in the Mesosphere, or AIM, mission captured this image of noctilucent clouds over the poles in 2010. By compiling data from several missions at once, researchers have now created a record of the clouds at lower latitudes as well.

Image Credit: NASA/AIM

Now scientists have gathered information from several other missions, past and present, and combined it with computer simulations to systematically show that the presence of these bright shining clouds have indeed increased in areas between 40 and 50 degrees north latitude, a region which covers the northern third of the United Sates and the lowest parts of Canada.

The research was published online in the Journal of Geophysical Research: Atmospheres on March 18, 2014.

"Noctilucent clouds occur at altitudes of 50 miles above the surface -- so high that they can reflect light from the sun back down to Earth," said James Russell, an atmospheric and planetary scientist at Hampton University in Hampton, Va., and first author on the paper.

"AIM and other research has shown that in order for the clouds to form, three things are needed:  very cold temperatures, water vapor and meteoric dust. The meteoric dust provides sites that the water vapor can cling to until the cold temperatures cause water ice to form." 

To study long-term changes in noctilucent clouds, Russell and his colleagues used historical temperature and water vapor records and a validated model to translate this data into information on the presence of the clouds.

They used temperature data from 2002 to 2011 from NASA's Thermosphere Ionosphere Mesosphere Energetics and Dynamics, or TIMED, mission and water vapor data from NASA's Aura mission from 2005 to 2011. They used a model previously developed by Mark Hervig, a co-author on the paper at GATS, Inc., in Driggs, Idaho.

The team tested the model by comparing its output to observations from the Osiris instrument on the Swedish Odin satellite, which launched in 2001, and the SHIMMER instrument on the U.S. Department of Defense STPSat-1 mission, both of which observed low level noctilucent clouds over various time periods during their flights. The output correlated extremely well to the actual observations, giving the team confidence in their model.

The model showed that the occurrence of noctilucent clouds had indeed increased from 2002 to 2011. These changes correlate to a decrease in temperature at the peak height where noctilucent clouds exist in the atmosphere. Temperatures at this height do not match temperatures at lower levels – indeed, the coldest place in the atmosphere is at this height during summertime over the poles – but a change there certainly does raise questions about change in the overall climate system.

Russell and his team will research further to determine if the noctilucent cloud frequency increase and accompanying temperature decrease over the 10 years could be due to a reduction in the sun’s energy and heat, which naturally occurred as the solar output went from solar maximum in 2002 to solar minimum in 2009.

"As the sun goes to solar minimum, the solar heating of the atmosphere decreases, and a cooling trend would be expected," said Russell.

NASA's Goddard Space Flight Center in Greenbelt, Md. manages the TIMED mission for the agency's Science Mission Directorate at NASA Headquarters in Washington. The spacecraft was built by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.

Related Links:

› TIMED mission
› Noctilucent clouds and AIM mission
  

Karen C. Fox
NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | Eurek Alert!

Further reports about: AIM Flight Greenbelt Mesosphere NASA STPSat-1 Space atmosphere clouds decrease observations satellite spacecraft temperature

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>