Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antarctica could raise sea level faster than previously thought

14.08.2014

Ice discharge from Antarctica could contribute up to 37 centimeters to the global sea level rise within this century, a new study shows.

For the first time, an international team of scientists provide a comprehensive estimate on the full range of Antarctica’s potential contribution to global sea level rise based on physical computer simulations.

Led by the Potsdam Institute for Climate Impact Research, the study combines a whole set of state-of-the-art climate models and observational data with various ice models.

The results reproduce Antarctica’s recent contribution to sea level rise as observed by satellites in the last two decades and show that the ice continent could become the largest contributor to sea level rise much sooner than previously thought.

“If greenhouse gases continue to rise as before, ice discharge from Antarctica could raise the global ocean by an additional 1 to 37 centimeters in this century already," says lead author Anders Levermann. “Now this is a big range – which is exactly why we call it a risk: Science needs to be clear about the uncertainty, so that decision makers at the coast and in coastal megacities like Shanghai or New York can consider the potential implications in their planning processes,” says Levermann.

Antarctica currently contributes less than 10 percent to global sea level rise

The scientists analyzed how rising global mean temperatures resulted in a warming of the ocean around Antarctica, thus influencing the melting of the Antarctic ice shelves. While Antarctica currently contributes less than 10 percent to global sea level rise and is a minor contributor compared to the thermal expansion of the warming oceans and melting mountain glaciers, it is Greenland and especially the Antarctic ice sheets with their huge volume of ice that are expected to be the major contributors to future long-term sea level rise. The marine ice sheets in West Antarctica alone have the potential to elevate sea level by several meters - over several centuries.

According to the study, the computed projections for this century’s sea level contribution are significantly higher than the latest IPCC projections on the upper end. Even in a scenario of strict climate policies limiting global warming in line with the 2°C target, the contribution of Antarctica to global sea level rise covers a range of 0 to 23 centimeters.

A critical input to future projections

“Rising sea level is widely regarded as a current and ongoing result of climate change that directly affects hundreds of millions of coastal dwellers around the world and indirectly affects billions more that share its financial costs,” says co-author Robert Bindschadler from the NASA Goddard Space Flight Center.

“This paper is a critical input to projections of possible future contributions of diminishing ice sheets to sea level by a rigorous consideration of uncertainty of not only the results of ice sheet models themselves but also the climate and ocean forcing driving the ice sheet models. Billions of Dollars, Euros, Yuan etc. are at stake and wise and cost-effective decision makers require this type of useful information from the scientific experts.”

While the study signifies an important step towards a better understanding of Antarctica in a changing climate and its influence on sea level change within the 21st century, major modeling challenges still remain: Datasets of Antarctic bedrock topography, for instance, are still inadequate and some physical processes of interaction between ice and ocean cannot be sufficiently simulated yet.

Notably, the study’s results are limited to this century only, while all 19 of the used comprehensive climate models indicate that the impacts of atmospheric warming on Antarctic ice shelf cavities will hit with a time delay of several decades. “Earlier research indicated that Antarctica would become important in the long term,” says Levermann. “But pulling together all the evidence it seems that Antarctica could become the dominant cause of sea level rise much sooner.”

Article: Levermann, A., Winkelmann, R., Nowicki, S., Fastook, J.L., Frieler, K., Greve, R., Hellmer, H.H., Martin, M.A., Meinshausen, M., Mengel, M., Payne, A.J., Pollard, D., Sato, T., Timmermann, R., Wang, W.L., Bindschadler, R.A. (2014): Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models. Earth System Dynamics, 5, 271-293 [DOI: 10.5194/esd-5-271-2014]

Weblink where the article will be published: www.earth-syst-dynam.net/5/271/2014/ 

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Weitere Informationen:

http://www.earth-syst-dynam.net/5/271/2014/ - Weblink where the article will be published

Jonas Viering | PIK Potsdam
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>