Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Antarctic seabed sonar images reveal clues to sea-level rise

07.05.2009
Most comprehensive seabed image of Amundsen Sea Embayment

Motorway-sized troughs and channels carved into Antarctica's continental shelves by glaciers thousands of years ago could help scientists to predict future sea-level rise according to a report in the journal Geology this month (May).

Using sonar technology from onboard ships, scientists from British Antarctic Survey (BAS) and the German Alfred Wegener Institute (AWI) captured the most extensive, continuous set of images of the seafloor around the Amundsen Sea embayment ever taken. This region is a major drain point of the West Antarctic Ice Sheet (WAIS) and considered by some scientists to be the most likely site for the initiation of major ice sheet collapse.

The sonar images reveal an 'imprint' of the Antarctic ice sheet as it was at the end of the last ice age around 10 thousand years ago. The extent of ice covering the continent was much larger than it is today. The seabed troughs and channels that are now exposed provide new clues about the speed and flow of the ice sheet. They indicate that the controlling mechanisms that move ice towards the coast and into the sea are more complex than previously thought.

Lead author Rob Larter from British Antarctic Survey said, "One of the greatest uncertainties for predicting future sea-level rise is Antarctica's likely contribution. It is very important for scientists and our society to understand fully how polar ice flows into the sea. Indeed, this issue was highlighted in 2007 by the Intergovernmental Panel on Climate Change (IPCC). Our research tells us more about how the ice sheet responded to warming at the end of the last ice age, and how processes at the ice sheet bed controlled its flow. This is a big step toward understanding of how the ice sheets are likely to respond to future warming.'

Issued by British Antarctic Survey Press Office: British Antarctic Survey media contact: Linda Capper, Tel: +44 (0)1223 221 448; email: LMCA@bas.ac.uk; mobile 07714 233744

Alfred Wegener Press Office contact: Margarete Pauls, Tel: +49(471) 4831-1180; email: Margarete.Pauls@awi.de

Jacqueline Martin, Tel: +49(471) 4831-1112; email: Jacqueline.Martin@awi.de

Interview opportunities with BAS science contact: Dr Rob Larter, Tel: +44 (0)1223 221573; email RDLA@bas.ac.uk

Interview opportunities with AWI science contact: Dr Karsten Gohl, Tel: +49(471)4831-1361; email: Karsten.Gohl@awi.de

Background

For the past 20 years scientists studying the Greenland and Antarctic ice sheets have used a range of technologies, including satellite images, ice-penetrating radar and other techniques to monitor the movement of ice as it flows from Antarctica's interior towards the coast.

Science teams often work in remote and extreme locations to measure change in their attempts to understand their likely contribution to global sea-level rise.

This work is the result of a collaboration between scientists onboard two research cruises in 2006 – Jan-Feb BAS ship RRS James Clark Ross; Feb-Mar onboard AWI ship RV Polarstern. Ship-borne research cruises provide crucial information about Antarctica's ice sheet and climate history. This data combined with that from other satellite and ground-based studies help provide answers to big environmental questions that are relevant to people all over the world.

The area of the Amundsen Sea embayment surveyed was 9950 km2. This is equal to -
Nearly half the size of Wales (20,799 sq.km)
Nearly the size of Yorkshire (11,903 sq.km, since 1991)
Larger than Norfolk and Suffolk combined (9172 sq.km)
In the western Amundsen Sea embayment three 17-39 km wide troughs extend seaward from the modern ice shelf front. This is roughly with width of the English Channel. Individual streamlined features carved into the seabed are about as wide as a motorway.

Ice sheet

The Antarctic ice sheet retreated to near its present limit around 10 thousand years ago. It is the layer of ice up to 5000 m thick covering the Antarctic continent. It is formed from snow falling in the interior of the Antarctic which compacts into ice. The ice sheet slowly moves towards the coast, eventually breaking away as icebergs which gradually melt into the sea.

The ice sheet covering East Antarctica is very stable, because it lies on rock that is above sea level and is thought unlikely to collapse. The West Antarctic is less stable, because it sits on rock below sea level.

Ice shelf

An ice shelf is a thick (100-1000 m), floating platform of ice that forms where a glacier or ice sheet flows down to a coastline and onto the ocean surface. Ice shelves are found in Antarctica, Greenland and Canada only.

Glacier

Just as rivers collect water and allow it to flow downhill a glacier is actually a "river" of ice. A glacier flows much more slowly than river. Rivers of ice within ice sheets account for most of the drainage into the oceans.

Continental shelf

The relatively shallow (generally up to 200 meters) seabed surrounding a continent where the depth gradually increases before it plunges into the deep ocean. Around Antarctica the continental shelf is up to 1600 m deep as a result of millions of years of glacial erosion. The deepest parts of the Antarctic continental shelf are near the present ice margin and depths generally decrease offshore.

The Cambridge-based British Antarctic Survey (BAS) is a world leader in research into global environmental issues. With an annual budget of around £45 million, five Antarctic Research Stations, two Royal Research Ships and five aircraft, BAS undertakes an interdisciplinary research programme and plays an active and influential role in Antarctic affairs. BAS has joint research projects with over 40 UK universities and has more than 120 national and international collaborations. It is a component of the Natural Environment Research Council. More information about the work of the Survey can be found at: www.antarctica.ac.uk

Linda Capper | EurekAlert!
Further information:
http://www.bas.ac.uk
http://www.antarctica.ac.uk

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>