Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antarctic ice core sheds new light on how the last ice age ended

16.08.2013
Changes in Earth's orbit appear to be key to Antarctic warming

Analysis of an ice core taken by the National Science Foundation- (NSF) funded West Antarctic Ice Sheet (WAIS) Divide drilling project reveals that warming in Antarctica began about 22,000 years ago, a few thousand years earlier than suggested by previous records.


Brian Bencivengo, of the National Ice Core Laboratory, holds a segment of the WAIS ice core.

This timing shows that West Antarctica did not "wait for a cue" from the Northern Hemisphere to start warming, as scientists had previously supposed.

For more than a century scientists have known that Earth's ice ages are caused by the wobbling of the planet's orbit, which changes its orientation to the sun and affects the amount of sunlight reaching higher latitudes.

The Northern Hemisphere's last ice age ended about 20,000 years ago, and most evidence had indicated that the ice age in the Southern Hemisphere ended about 2,000 years later, suggesting that the South was responding to warming in the North.

But research published online Aug. 14 in the journal Nature shows that Antarctic warming began at least two, and perhaps four, millennia earlier than previously thought.

Most previous evidence for Antarctic climate change had come from ice cores drilled in East Antarctica, the highest and coldest part of the continent. However, a U.S.-led research team studying the West Antarctic core found that warming there was well underway 20,000 years ago.

WAIS Divide is a large-scale and multi-year glaciology project supported by the U.S. Antarctic Program (USAP), which NSF manages. Through USAP, NSF coordinates all U.S. science on the southernmost continent and aboard vessels in the Southern Ocean and provides the necessary logistics to make the science possible.

The WAIS Divide site is in an area where there is little horizontal flow of the ice, so the data are known to be from a location that remained consistent over long periods.

The WAIS Divide ice core is more than two miles deep and covers a period stretching back 68,000 years, though so far data have been analyzed only from layers going back 30,000 years. Near the surface, one meter of snow is equal to a year of accumulation, but at greater depths the annual layers are compressed to centimeters of ice.

"Sometimes we think of Antarctica as this passive continent waiting for other things to act on it. But here it is showing changes before it 'knows' what the North is doing," said T.J. Fudge, a University of Washington doctoral student in Earth and Space Sciences and lead corresponding author of the Nature paper. Fudge's 41 co-authors are other members of the WAIS project.

Fudge identified the annual layers by running two electrodes along the ice core to measure higher electrical conductivity associated with each summer season. Evidence of greater warming turned up in layers associated with 18,000 to 22,000 years ago, the beginning of the last deglaciation.

"This deglaciation is the last big climate change that we're able to go back and investigate," he said. "It teaches us about how our climate system works."

West Antarctica is separated from East Antarctica by a major mountain range. East Antarctica has a substantially higher elevation and tends to be much colder, though there is recent evidence that it too is warming.
Rapid warming in West Antarctica in recent decades has been documented in previous research by Eric Steig, a professor of Earth and Space Sciences at the University of Washington who serves on Fudge's doctoral committee and whose laboratory produced the oxygen isotope data used in the Nature paper. The new data confirm that West Antarctica's climate is more strongly influenced by regional conditions in the Southern Ocean than East Antarctica is.

"It's not surprising that West Antarctica is showing something different from East Antarctica on long time scales, but we didn't have direct evidence for that before," Fudge said.

He noted that the warming in West Antarctica 20,000 years ago is not explained by a change in the sun's intensity. Instead, how the sun's energy was distributed over the region was a much bigger factor. It not only warmed the ice sheet but also warmed the Southern Ocean that surrounds Antarctica, particularly during summer months when more sea ice melting could take place.

Changes in Earth's orbit today are not an important factor in the rapid warming that has been observed recently, he added. "Earth's orbit changes on the scale of thousands of years, but carbon dioxide today is changing on the scale of decades so climate change is happening much faster today," Fudge said.

Julie Palais, the Antarctic Glaciology Program director in NSF's Division of Polar Programs, said new findings will help scientists to "better understand not only what happened at the end of the last ice age but it should also help inform our understanding of what might be happening as the climate warms and conditions begin to change in and around the Antarctic continent."

She added, "West Antarctica is currently experiencing some of the largest changes on the continent, such as the large calving events in the Amundsen Sea Embayment linked to warm ocean currents undercutting the outlet glaciers. The recent changes are consistent with the WAIS Divide results that show West Antarctica is sensitive to changes in ocean conditions in the past."

Media Contacts
Peter West, NSF (703) 292-7530 pwest@nsf.gov
Vince Stricherz, University of Washington (206) 543-2580 vinces@uw.edu
Justin Broglio, Desert Research Institute (775) 673-7610 Justin.Broglio@dri.edu
Program Contacts
Julie M. Palais, NSF (703) 292-8033 jpalais@nsf.gov
Principal Investigators
T.J. Fudge, University of Washington (206) 543-0162 tjfudge@uw.edu
Eric Steig, University of Washington (206) 685-3715 steig@uw.edu
Kendrick Taylor, Desert Research Institute (775) 219 7493 Kendrick@dri.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget was $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Peter West | EurekAlert!
Further information:
http://www.nsf.gov
http://nsf.gov/news/news_summ.jsp?cntn_id=128808&org=NSF&from=news

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>