Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Antarctic glacier thinning at alarming rate

The thinning of a gigantic glacier in Antarctica is accelerating, scientists warned today.

The Pine Island Glacier in West Antarctica, which is around twice the size of Scotland, is losing ice four times as fast as it was a decade years ago.

The research, published in the journal Geophysical Research Letters, also reveals that ice thinning is now occurring much further inland. At this rate scientists estimate that the main section of the glacier will have disappeared in just 100 years, six times sooner than was previously thought.

The Pine Island Glacier is located within the most inaccessible area of Antarctica – over 1000 km from the nearest research base – and was for many years overlooked. Now, scientists have been able to track the glacier's development using continuous satellite measurements over the past 15years.

"Accelerated thinning of the Pine Island Glacier represents perhaps the greatest imbalance in the cryosphere today, and yet we would not have known about it if it weren't for a succession of satellite instruments," says Professor Andrew Shepherd, a co-author of the research from the School of Earth and Environment at the University of Leeds.

"Being able to assemble a continuous record of measurements over the past 15 years has provided us with the remarkable ability to identify both subtle and dramatic changes in ice that were previously hidden," he adds.

Scientists believe that the retreat of glaciers in this sector of Antarctica is caused by warming of the surrounding oceans, though it is too early to link such a trend to global warming.

The 5,400 km squared region of the Pine Island Glacier affected today is big enough to impact the rate at which sea level rise around the world.

"Because the Pine Island Glacier contains enough ice to almost double the IPCC's best estimate of 21st century sea level rise, the manner in which the glacier will respond to the accelerated thinning is a matter of great concern " says Professor Shepherd.

The research was led by Professor Duncan Wingham at University College London, and was funded by the UK Natural Environment Research Council.

For more information

Professor Andrew Shepherd is available for interview. Mobile: 0795 226 5527, Email:

A video showing the data of the ice loss in the Pine Island Glacier is available to journalists on request.

Please contact Clare Ryan in the University of Leeds press office on 0113 343 8059, Email:

Notes to Editors

The 2008 Research Assessment Exercise showed the University of Leeds to be the UK's eighth biggest research powerhouse. The University is one of the largest higher education institutions in the UK and a member of the Russell Group of research-intensive universities. The University's vision is to secure a place among the world's top 50 by 2015.

The School of Earth and Environment at the University of Leeds is has more than 90 academic staff, over 60 research staff and 140 postgraduate researchers. It focuses on a multidisciplinary approach to understanding our environment, studying the Earth from its core to its atmosphere and examining the social and economic dimensions of sustainability.

The Natural Environment Research Council is the UK's main agency for funding and managing research, training and knowledge exchange in the environmental sciences. It coordinates some of the world's most exciting research projects, tackling major issues such as climate change, environmental influences on human health, and the genetic make-up of life on earth.

Clare Ryan | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>