Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Another human footprint in the ocean

28.11.2014

Rising anthropogenic nitrate levels in the North Pacific Ocean

Human-induced changes to Earth's carbon cycle - for example, rising atmospheric carbon dioxide and ocean acidification - have been observed for decades. However, a study published this week in Science showed human activities, in particular industrial and agricultural processes, have also had significant impacts on the upper ocean nitrogen cycle.


Hawaii Ocean Time-series Program scientists work aboard the R/V Ka'imikai-O-Kanaloa in the North Pacific Ocean. The HOT Program provided decades of data used to reconstruct historical nitrogen concentrations.

Credit: Paul Lethaby, UH SOEST

The rate of deposition of reactive nitrogen (i.e., nitrogen oxides from fossil fuel burning and ammonia compounds from fertilizer use) from the atmosphere to the open ocean has more than doubled globally over the last 100 years.

This anthropogenic addition of nitrogen has reached a magnitude comparable to about half of global ocean nitrogen fixation (the natural process by which atmospheric nitrogen gas becomes a useful nutrient for organisms). David Karl, Professor of Oceanography and Director of the Daniel K. Inouye Center for Microbial Oceanography at the University of Hawai'i, teamed up with researchers from Korea, Switzerland and the U.S. National Oceanic and Atmospheric Administration to assess changes in nitrate concentration between the 1960s and 2000s across the open North Pacific Ocean.

Their analysis, which could discern human-derived nitrogen from natural nitrogen fixation, revealed that the oceanic nitrate concentration increased significantly over the last 30 years in surface waters of the North Pacific due largely to the enhanced deposition of nitrogen from the atmosphere.

"This is a sobering result, one that I would not have predicted," said Karl. "The North Pacific is so vast it is hard to imagine that humans could impact the natural nitrogen cycle."

The researchers used ocean data in conjunction with the state-of-the-art Earth System Model to reconstruct the history of the oceanic nitrate concentration and make predictions about the future state of the North Pacific Ocean. Their assessment revealed a consistent picture of increasing nitrate concentrations, the magnitude and pattern of which can only be explained by the observed increase in atmospheric nitrogen deposition.

Enhanced nitrogen deposition has several potential ecological ramifications. Because biological activity is limited by nitrate availability in the North Pacific Ocean, the input of new nitrogen from the atmosphere may increase photosysnthesis in the sunlit layers and export of carbon-rich organic material out of the surface ocean into the deep.

"The burgeoning human population needs energy and food - unfortunately, nitrogen pollution is an unintended consequence and not even the open ocean is immune from our daily industrial activities," said Karl.

Given the likelihood that the magnitude of atmospheric nitrogen deposition will continue to increase in the future, the North Pacific Ocean could rapidly switch to having surplus nitrate. Thus, past and future increases in atmospheric nitrogen deposition have the potential to alter the base of the marine food web; and, in the long term, the structure of the ecosystem.

In particular, the shift in nutrient availability could favor marine organisms that thrive under the high nitrate and low phosphorus conditions. If similar trends are confirmed in the Atlantic and Indian Oceans, it would constitute another example of a global-scale alteration of the Earth system. Further, the findings of this study of the North Pacific highlight the need for greater controls on the emission of nitrogen compounds during combustion and agricultural processes.

This research was supported by the Korean National Research Foundation of Ministry of Science, ICT and Future Planning, Science and Technology (Global Research Project), through a novel collaboration between scientists at Pohang University of Science and Technology and the University of Hawai'i. David Karl's participation was also supported by the U. S. National Science Foundation and the Gordon and Betty Moore Foundation through grants GBMF480.01 and GBMF3794.

I-N Kim, K Lee, N Gruber, D M Karl, J L Bullister, S Yang, T-W Kim (2014). Increasing anthropogenic nitrogen in the North Pacific Ocean. Science

Marcie Grabowski | EurekAlert!
Further information:
http://manoa.hawaii.edu/

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>