Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animations show extent of marcellus shale development

06.10.2010
The pace and extent of Marcellus Shale development across Pennsylvania can be "seen" in animated maps produced by the Penn State Marcellus Center for Outreach and Research.

Based on data from the Pennsylvania Department of Environmental Protection, the animations (http://www.marcellus.psu.edu/resources/maps.php) show both the number of drilling permits issued for the Marcellus Shale target and the number of wells drilled by year from 2007 through August 2010. Although permits were issued prior to 2007, information on those permits did not include latitude and longitude.

"These animations give people a chance to see how the pace of Marcellus development has accelerated," said Tom Murphy, co-director of the Marcellus Center and extension educator with Penn State Cooperative Extension. "When you look at these animations, you are able to trace where development is occurring and get a sense of the rate at which it is occurring."

The two animations also allow comparison between the number of permits issued and the actual number of wells drilled.

The animations show that interest in the Marcellus has skyrocketed with just 99 drilling permits issued in 2007 compared to 2,108 in the first eight months of 2010. A similar surge in the numbers of wells drilled is also evident. In 2010, through August 31, 950 wells had been drilled in the Marcellus Shale while in all of 2007, only 43 wells were drilled.

"We expect that the uptick in Marcellus well drilling activity will continue, given the high production rates being seen in the wells and the relatively low cost to develop this gas resource," said Michael Arthur, co-director of Penn State's Marcellus Center and professor of geosciences. "Even with the low natural gas commodity pricing, drilling in the Marcellus can still be profitable for efficient companies."

The DEP updates its permit and well reports weekly at http://www.dep.state.pa.us/dep/deputate/minres/oilgas/RIG10.htm. A separate spreadsheet identifies Marcellus permits and whether they are for horizontal or vertical wells.

The Marcellus Shale occurs as deep as 9,000 feet below ground surface and covers about 95,000 square miles over six states including Pennsylvania. Its organic carbon-rich, gas-producing layers range from less than five feet thick to more than 250 feet thick. Estimates are that the Marcellus has enough recoverable natural gas to supply the entire U.S. for at least 20 years at the current rate of consumption.

The Marcellus Center for Outreach and Research (www.marcellus.psu.edu) is supported by Penn State Outreach, Penn State Institutes of Energy and the Environment and the colleges of Agricultural Sciences and Earth and Mineral Sciences.

For more information, contact the Marcellus Center for Outreach and Research, marcellus@psu.edu or (814) 865-1587.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu
http://www.marcellus.psu.edu/resources/maps.php
http://www.dep.state.pa.us/dep/deputate/minres/oilgas/RIG10.htm

Further reports about: Animations Geosciences Marcellus Shale Outreach Shale natural gas

More articles from Earth Sciences:

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

nachricht Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>