Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animations show extent of marcellus shale development

06.10.2010
The pace and extent of Marcellus Shale development across Pennsylvania can be "seen" in animated maps produced by the Penn State Marcellus Center for Outreach and Research.

Based on data from the Pennsylvania Department of Environmental Protection, the animations (http://www.marcellus.psu.edu/resources/maps.php) show both the number of drilling permits issued for the Marcellus Shale target and the number of wells drilled by year from 2007 through August 2010. Although permits were issued prior to 2007, information on those permits did not include latitude and longitude.

"These animations give people a chance to see how the pace of Marcellus development has accelerated," said Tom Murphy, co-director of the Marcellus Center and extension educator with Penn State Cooperative Extension. "When you look at these animations, you are able to trace where development is occurring and get a sense of the rate at which it is occurring."

The two animations also allow comparison between the number of permits issued and the actual number of wells drilled.

The animations show that interest in the Marcellus has skyrocketed with just 99 drilling permits issued in 2007 compared to 2,108 in the first eight months of 2010. A similar surge in the numbers of wells drilled is also evident. In 2010, through August 31, 950 wells had been drilled in the Marcellus Shale while in all of 2007, only 43 wells were drilled.

"We expect that the uptick in Marcellus well drilling activity will continue, given the high production rates being seen in the wells and the relatively low cost to develop this gas resource," said Michael Arthur, co-director of Penn State's Marcellus Center and professor of geosciences. "Even with the low natural gas commodity pricing, drilling in the Marcellus can still be profitable for efficient companies."

The DEP updates its permit and well reports weekly at http://www.dep.state.pa.us/dep/deputate/minres/oilgas/RIG10.htm. A separate spreadsheet identifies Marcellus permits and whether they are for horizontal or vertical wells.

The Marcellus Shale occurs as deep as 9,000 feet below ground surface and covers about 95,000 square miles over six states including Pennsylvania. Its organic carbon-rich, gas-producing layers range from less than five feet thick to more than 250 feet thick. Estimates are that the Marcellus has enough recoverable natural gas to supply the entire U.S. for at least 20 years at the current rate of consumption.

The Marcellus Center for Outreach and Research (www.marcellus.psu.edu) is supported by Penn State Outreach, Penn State Institutes of Energy and the Environment and the colleges of Agricultural Sciences and Earth and Mineral Sciences.

For more information, contact the Marcellus Center for Outreach and Research, marcellus@psu.edu or (814) 865-1587.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu
http://www.marcellus.psu.edu/resources/maps.php
http://www.dep.state.pa.us/dep/deputate/minres/oilgas/RIG10.htm

Further reports about: Animations Geosciences Marcellus Shale Outreach Shale natural gas

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>