Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Angiosperm plants and mammal dung – food for evolution

06.08.2014

The sequential evolution of angiosperm plants and their mammal herbivores was tracked by the evolution of beetles, shows a newly published study from the Zoological Research Museum Alexander Koenig – Leibniz Institute for Animal Biodiversity in Bonn and the Natural History Museum London in Proceedings of the Royal Society B. using DNA sequences.

Dr. Dirk Ahrens, Dr. Julia Schwarzer and their colleague Prof. Alfried Vogler reconstructed a phylogeny of scarab beetles, which include stag beetles, dung beetles and chafers. The researches dated the different lineages using fossils and a molecular clock.


A typical species of the genus Scarabaeus rolling a pill.

copyright: Dr. Dirk Ahrens, ZFMK, Bonn


A typical species of the genus Schizonycha, which belongs to the chafers.

copyright: Dr. Dirk Ahrens, ZFMK, Bonn

The researchers showed that plant-feeding chafers, which are among the most diverse beetle groups in the world, arose almost immediately after the origin of the angiosperms in the Middle Cretaceous. The same lineage also gave rise to dung beetles, but they originated much later, and only after the mammals, including the even-toed ungulates (Artiodactyla) as the most important herbivores, had themselves started to use the angiosperms as their food source. The late origin of dung feeding rejects the widely held hypothesis that early dung beetles fed initially on dinosaur dung, which already were extinct by that time. Instead, the evolution of angiosperm plants provided a new resource that first enabled the origins of herbivory in mammals and beetles, and secondary dung feeding among the scarab beetles.

However, the researchers still try to unravel the mystery of why there are so many species of chafers. In contrast to other plant feeding insects, chafers are not specialised on certain plant species. It might thus be possible that the copious leaf litter produced by the angiosperms created highly suitable conditions for these beetles and their soil-dwelling larvae.

Contact:
Dr. Dirk Ahrens
(Abteilung Arthropoda)
Zoologisches Forschungsmuseum Alexander Koenig
Adenauerallee 160
53113 Bonn
Germany

Tel.: +49 (0)228 9122 286
Fax: +49 (0)228 9122 212

E-Mail: d.ahrens@zfmk.de; ahrens.dirk_col@gmx.de
http://www.zfmk.de/web/ZFMK_Mitarbeiter/AhrensDirk/index.de.html

The paper and any related press releases are made available – under embargo – to the media via a password protected press site. This press release will also be made available to journalists on the Royal Society’s press site.

Ahrens D, Schwarzer J, Vogler AP. 2014 The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals. Proc. R. Soc. B 20141470.
http://dx.doi.org/10.1098/rspb.2014.1470


ZFMK: Zoologisches Forschungsmuseum Alexander Koenig - Leibniz-Institute for animal biodiversity is part of the Leibniz Association, a network of 89 scientifically, legally and economically independent research institutes and scientific service facilities. Leibniz Institutes perform strategic- and thematically-oriented research and offer scientific service of national significance while striving to find scientific solutions for major social challenges. More information: http://www.leibniz-gemeinschaft.de/

Weitere Informationen:

For more information visit: http://dx.doi.org/10.1098/rspb.2014.1470

Sabine Heine | idw - Informationsdienst Wissenschaft

Further reports about: Angiosperm Biodiversität Leibniz Leibniz-Institut angiosperms beetles clock mammal mammals species

More articles from Earth Sciences:

nachricht Only above-water microbes play a role in cave development
03.09.2015 | Penn State

nachricht NASA sees shapeless Tropical Depression 14E
03.09.2015 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Lighter with Laser Welding

03.09.2015 | Process Engineering

For 2-D boron, it's all about that base

03.09.2015 | Materials Sciences

Phagraphene, a 'relative' of graphene, discovered

03.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>