Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Angiosperm plants and mammal dung – food for evolution

06.08.2014

The sequential evolution of angiosperm plants and their mammal herbivores was tracked by the evolution of beetles, shows a newly published study from the Zoological Research Museum Alexander Koenig – Leibniz Institute for Animal Biodiversity in Bonn and the Natural History Museum London in Proceedings of the Royal Society B. using DNA sequences.

Dr. Dirk Ahrens, Dr. Julia Schwarzer and their colleague Prof. Alfried Vogler reconstructed a phylogeny of scarab beetles, which include stag beetles, dung beetles and chafers. The researches dated the different lineages using fossils and a molecular clock.


A typical species of the genus Scarabaeus rolling a pill.

copyright: Dr. Dirk Ahrens, ZFMK, Bonn


A typical species of the genus Schizonycha, which belongs to the chafers.

copyright: Dr. Dirk Ahrens, ZFMK, Bonn

The researchers showed that plant-feeding chafers, which are among the most diverse beetle groups in the world, arose almost immediately after the origin of the angiosperms in the Middle Cretaceous. The same lineage also gave rise to dung beetles, but they originated much later, and only after the mammals, including the even-toed ungulates (Artiodactyla) as the most important herbivores, had themselves started to use the angiosperms as their food source. The late origin of dung feeding rejects the widely held hypothesis that early dung beetles fed initially on dinosaur dung, which already were extinct by that time. Instead, the evolution of angiosperm plants provided a new resource that first enabled the origins of herbivory in mammals and beetles, and secondary dung feeding among the scarab beetles.

However, the researchers still try to unravel the mystery of why there are so many species of chafers. In contrast to other plant feeding insects, chafers are not specialised on certain plant species. It might thus be possible that the copious leaf litter produced by the angiosperms created highly suitable conditions for these beetles and their soil-dwelling larvae.

Contact:
Dr. Dirk Ahrens
(Abteilung Arthropoda)
Zoologisches Forschungsmuseum Alexander Koenig
Adenauerallee 160
53113 Bonn
Germany

Tel.: +49 (0)228 9122 286
Fax: +49 (0)228 9122 212

E-Mail: d.ahrens@zfmk.de; ahrens.dirk_col@gmx.de
http://www.zfmk.de/web/ZFMK_Mitarbeiter/AhrensDirk/index.de.html

The paper and any related press releases are made available – under embargo – to the media via a password protected press site. This press release will also be made available to journalists on the Royal Society’s press site.

Ahrens D, Schwarzer J, Vogler AP. 2014 The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals. Proc. R. Soc. B 20141470.
http://dx.doi.org/10.1098/rspb.2014.1470


ZFMK: Zoologisches Forschungsmuseum Alexander Koenig - Leibniz-Institute for animal biodiversity is part of the Leibniz Association, a network of 89 scientifically, legally and economically independent research institutes and scientific service facilities. Leibniz Institutes perform strategic- and thematically-oriented research and offer scientific service of national significance while striving to find scientific solutions for major social challenges. More information: http://www.leibniz-gemeinschaft.de/

Weitere Informationen:

For more information visit: http://dx.doi.org/10.1098/rspb.2014.1470

Sabine Heine | idw - Informationsdienst Wissenschaft

Further reports about: Angiosperm Biodiversität Leibniz Leibniz-Institut angiosperms beetles clock mammal mammals species

More articles from Earth Sciences:

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

nachricht Rutgers scientists help create world's largest coral gene database
24.05.2016 | Rutgers University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>