Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Volcanic Blast Provides More Evidence of Water on Early Mars

07.05.2012
The atmosphere of Mars is less than 1 percent the density of Earth’s. It’s one of the reasons liquid water covers much of our planet but cannot exist on the Red Planet.

As more research points toward the possibility of water on early Mars, scientists have increased their studies on the density of its atmosphere billions of years ago. It’s not an easy task. In fact, it’s very difficult to even determine Earth’s atmospheric pressure from the same time frame.

Georgia Tech Assistant Professor Josef Dufek is attempting to learn more about the past atmospheric conditions by analyzing two unlikely sources: ancient volcanic eruptions and surface observations by the Mars rover Spirit. His new findings, published by the journal Geophysical Research Letters, provide more evidence that early Mars was saturated with water and that its atmosphere was considerably thicker, at least 20 times more dense, than it is today.

“Atmospheric pressure has likely played a role in developing almost all Mars’ surface features,” said Dufek, an instructor in the School Earth and Atmospheric Sciences. “The planet’s climate, the physical state of water on its surface and the potential for life are all influenced by atmospheric conditions.”

Dufek’s first research tool was a rock fragment propelled into the Martian atmosphere during a volcanic eruption roughly 3.5 billion years ago. The deposit landed in the volcanic sediment, created a divot (or bomb sag), eventually solidified and remains in the same location today. Dufek’s next tool was the Mars rover. In 2007, Spirit landed at that site, known as Home Plate, and took a closer look at the imbedded fragment. Dufek and his collaborators at the University of California-Berkeley received enough data to determine the size, depth and shape of the bomb sag.

Dufek and his team then went to the lab to create bomb sags of their own. They created beds of sand using grains the same size as those observed by Spirit. The team propelled particles of varying materials (glass, rock and steel) at different speeds into dry, damp and saturated sand beds before comparing the divots with the bomb sag on Mars. No matter the type of particle, the saturated beds consistently produced impact craters similar in shape to the Martian bomb sag.

By varying the propulsion speeds, Dufek’s team also determined that the lab particles must hit the sand at a speed of less than 40 meters per second to create similar penetration depths. In order for something to move through Mars’ atmosphere at that peak velocity, the pressure would have to be a minimum of 20 times more dense than current conditions, which suggests that early Mars must have had a thicker atmosphere. Click here for a video demonstration.

“Our study is consistent with growing research that early Mars was at least a transiently watery world with a much denser atmosphere than we see today,” said Dufek. “We were only able to study one bomb sag at one location on the Red Planet. We hope to do future tests on other samples based on observations by the next rover, Curiosity.”

Curiosity is scheduled to land on Mars on August 5.

The material is based upon work supported by NASA under award No NNX09AL20G. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration.

Jason Maderer | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>