Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ancient ocean currents may have changed pace and intensity of ice ages


Slowing of currents may have flipped switch

Climate scientists have long tried to explain why ice-age cycles became longer and more intense some 900,000 years ago, switching from 41,000-year cycles to 100,000-year cycles.

About 950,000 years ago, North Atlantic currents, Northern Hemisphere ice sheets underwent changes.

Credit: NASA

In a paper published this week in the journal Science Express, researchers report that the deep ocean currents that move heat around the globe stalled or may have stopped at that time, possibly due to expanding ice cover in the Northern Hemisphere.

"The research is a breakthrough in understanding a major change in the rhythm of Earth's climate, and shows that the ocean played a central role," says Candace Major, program director in the National Science Foundation (NSF)'s Division of Ocean Sciences, which funded the research.

... more about:
»Atlantic »NSF »Ocean »circulation »cycles »dioxide »neodymium

The slowing currents increased carbon dioxide (CO2) storage in the oceans, leaving less CO2 in the atmosphere. That kept temperatures cold and kicked the climate system into a new phase of colder, but less frequent, ice ages, the scientists believe.

"The oceans started storing more carbon dioxide for a longer period of time," says Leopoldo Pena, the paper's lead author and a paleoceanographer at Columbia University's Lamont-Doherty Earth Observatory (LDEO). "Our evidence shows that the oceans played a major role in slowing the pace of the ice ages and making them more severe."

The researchers reconstructed the past strength of Earth's system of ocean currents by sampling deep-sea sediments off the coast of South Africa, where powerful currents originating in the North Atlantic Ocean pass on their way to Antarctica.

How vigorously those currents moved can be inferred by how much North Atlantic water made it that far, as measured by isotope ratios of the element neodymium bearing the signature of North Atlantic seawater.

Like tape recorders, the shells of ancient plankton incorporate these seawater signals through time, allowing scientists to approximate when currents grew stronger and when weaker.

Over the last 1.2 million years, the conveyor-like currents strengthened during warm periods and lessened during ice ages, as previously thought.

But at about 950,000 years ago, ocean circulation slowed significantly and stayed weak for 100,000 years.

During that period the planet skipped an interglacial--the warm interval between ice ages. When the system recovered, it entered a new phase of longer, 100,000-year ice age cycles.

After this turning point, deep ocean currents remained weak during ice ages, and ice ages themselves became colder.

"Our discovery of such a major breakdown in the ocean circulation system was a big surprise," said paper co-author Steven Goldstein, a geochemist at LDEO. "It allowed the ice sheets to grow when they should have melted, triggering the first 100,000-year cycle."

Ice ages come and go at predictable intervals based on the changing amount of sunlight that falls on the planet, due to variations in Earth's orbit around the sun.

Orbital changes alone, however, are not enough to explain the sudden switch to longer ice age intervals.

According to one earlier hypothesis for the transition, advancing glaciers in North America stripped away soils in Canada, causing thicker, longer-lasting ice to build up on the remaining bedrock.

Building on that idea, the researchers believe that the advancing ice might have triggered the slowdown in deep ocean currents, leading the oceans to vent less carbon dioxide, which suppressed the interglacial that should have followed.

"The ice sheets must have reached a critical state that switched the ocean circulation system into a weaker mode," said Goldstein.

Neodymium, a key component of cellphones, headphones, computers and wind turbines, also offers a good way of measuring the vigor of ancient ocean currents.

Goldstein and colleagues had used neodymium ratios in deep-sea sediment samples to show that ocean circulation slowed during past ice ages.

They used the same method to show that changes in climate preceded changes in ocean circulation.

A trace element in Earth's crust, neodymium washes into the oceans through erosion from the continents, where natural radioactive decay leaves a signature unique to the land mass from which it originated.

When Goldstein and Lamont colleague Sidney Hemming pioneered this method in the late 1990s, they rarely worried about surrounding neodymium contaminating their samples.

The rise of consumer electronics has changed that.

"I used to say you could do sample processing for neodymium analysis in a parking lot," said Goldstein. "Not anymore."

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734,
Kim Martineau, LDEO, (845) 365-8708,

Related Websites
NSF Grant: Late Quaternary Variability of the Agulhas Thermohaline Valve from Nd Isotopes in Planktonic Foraminifera:
International Ocean Discovery Program:

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Cheryl Dybas | Eurek Alert!
Further information:

Further reports about: Atlantic NSF Ocean circulation cycles dioxide neodymium

More articles from Earth Sciences:

nachricht Ancient rocks record first evidence for photosynthesis that made oxygen
07.10.2015 | University of Wisconsin-Madison

nachricht Distinguishing coincidence from causality: connections in the climate system
07.10.2015 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

New microscopy technology augments surgeon's view for greater accuracy

07.10.2015 | Medical Engineering

Discovery about new battery overturns decades of false assumptions

07.10.2015 | Power and Electrical Engineering

Ancient rocks record first evidence for photosynthesis that made oxygen

07.10.2015 | Earth Sciences

More VideoLinks >>>