Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ancient ocean currents may have changed pace and intensity of ice ages


Slowing of currents may have flipped switch

Climate scientists have long tried to explain why ice-age cycles became longer and more intense some 900,000 years ago, switching from 41,000-year cycles to 100,000-year cycles.

About 950,000 years ago, North Atlantic currents, Northern Hemisphere ice sheets underwent changes.

Credit: NASA

In a paper published this week in the journal Science Express, researchers report that the deep ocean currents that move heat around the globe stalled or may have stopped at that time, possibly due to expanding ice cover in the Northern Hemisphere.

"The research is a breakthrough in understanding a major change in the rhythm of Earth's climate, and shows that the ocean played a central role," says Candace Major, program director in the National Science Foundation (NSF)'s Division of Ocean Sciences, which funded the research.

... more about:
»Atlantic »NSF »Ocean »circulation »cycles »dioxide »neodymium

The slowing currents increased carbon dioxide (CO2) storage in the oceans, leaving less CO2 in the atmosphere. That kept temperatures cold and kicked the climate system into a new phase of colder, but less frequent, ice ages, the scientists believe.

"The oceans started storing more carbon dioxide for a longer period of time," says Leopoldo Pena, the paper's lead author and a paleoceanographer at Columbia University's Lamont-Doherty Earth Observatory (LDEO). "Our evidence shows that the oceans played a major role in slowing the pace of the ice ages and making them more severe."

The researchers reconstructed the past strength of Earth's system of ocean currents by sampling deep-sea sediments off the coast of South Africa, where powerful currents originating in the North Atlantic Ocean pass on their way to Antarctica.

How vigorously those currents moved can be inferred by how much North Atlantic water made it that far, as measured by isotope ratios of the element neodymium bearing the signature of North Atlantic seawater.

Like tape recorders, the shells of ancient plankton incorporate these seawater signals through time, allowing scientists to approximate when currents grew stronger and when weaker.

Over the last 1.2 million years, the conveyor-like currents strengthened during warm periods and lessened during ice ages, as previously thought.

But at about 950,000 years ago, ocean circulation slowed significantly and stayed weak for 100,000 years.

During that period the planet skipped an interglacial--the warm interval between ice ages. When the system recovered, it entered a new phase of longer, 100,000-year ice age cycles.

After this turning point, deep ocean currents remained weak during ice ages, and ice ages themselves became colder.

"Our discovery of such a major breakdown in the ocean circulation system was a big surprise," said paper co-author Steven Goldstein, a geochemist at LDEO. "It allowed the ice sheets to grow when they should have melted, triggering the first 100,000-year cycle."

Ice ages come and go at predictable intervals based on the changing amount of sunlight that falls on the planet, due to variations in Earth's orbit around the sun.

Orbital changes alone, however, are not enough to explain the sudden switch to longer ice age intervals.

According to one earlier hypothesis for the transition, advancing glaciers in North America stripped away soils in Canada, causing thicker, longer-lasting ice to build up on the remaining bedrock.

Building on that idea, the researchers believe that the advancing ice might have triggered the slowdown in deep ocean currents, leading the oceans to vent less carbon dioxide, which suppressed the interglacial that should have followed.

"The ice sheets must have reached a critical state that switched the ocean circulation system into a weaker mode," said Goldstein.

Neodymium, a key component of cellphones, headphones, computers and wind turbines, also offers a good way of measuring the vigor of ancient ocean currents.

Goldstein and colleagues had used neodymium ratios in deep-sea sediment samples to show that ocean circulation slowed during past ice ages.

They used the same method to show that changes in climate preceded changes in ocean circulation.

A trace element in Earth's crust, neodymium washes into the oceans through erosion from the continents, where natural radioactive decay leaves a signature unique to the land mass from which it originated.

When Goldstein and Lamont colleague Sidney Hemming pioneered this method in the late 1990s, they rarely worried about surrounding neodymium contaminating their samples.

The rise of consumer electronics has changed that.

"I used to say you could do sample processing for neodymium analysis in a parking lot," said Goldstein. "Not anymore."

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734,
Kim Martineau, LDEO, (845) 365-8708,

Related Websites
NSF Grant: Late Quaternary Variability of the Agulhas Thermohaline Valve from Nd Isotopes in Planktonic Foraminifera:
International Ocean Discovery Program:

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Cheryl Dybas | Eurek Alert!
Further information:

Further reports about: Atlantic NSF Ocean circulation cycles dioxide neodymium

More articles from Earth Sciences:

nachricht Gas hydrate research: Advanced knowledge and new technologies
23.03.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>