Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ancient ocean currents may have changed pace and intensity of ice ages


Slowing of currents may have flipped switch

Climate scientists have long tried to explain why ice-age cycles became longer and more intense some 900,000 years ago, switching from 41,000-year cycles to 100,000-year cycles.

About 950,000 years ago, North Atlantic currents, Northern Hemisphere ice sheets underwent changes.

Credit: NASA

In a paper published this week in the journal Science Express, researchers report that the deep ocean currents that move heat around the globe stalled or may have stopped at that time, possibly due to expanding ice cover in the Northern Hemisphere.

"The research is a breakthrough in understanding a major change in the rhythm of Earth's climate, and shows that the ocean played a central role," says Candace Major, program director in the National Science Foundation (NSF)'s Division of Ocean Sciences, which funded the research.

... more about:
»Atlantic »NSF »Ocean »circulation »cycles »dioxide »neodymium

The slowing currents increased carbon dioxide (CO2) storage in the oceans, leaving less CO2 in the atmosphere. That kept temperatures cold and kicked the climate system into a new phase of colder, but less frequent, ice ages, the scientists believe.

"The oceans started storing more carbon dioxide for a longer period of time," says Leopoldo Pena, the paper's lead author and a paleoceanographer at Columbia University's Lamont-Doherty Earth Observatory (LDEO). "Our evidence shows that the oceans played a major role in slowing the pace of the ice ages and making them more severe."

The researchers reconstructed the past strength of Earth's system of ocean currents by sampling deep-sea sediments off the coast of South Africa, where powerful currents originating in the North Atlantic Ocean pass on their way to Antarctica.

How vigorously those currents moved can be inferred by how much North Atlantic water made it that far, as measured by isotope ratios of the element neodymium bearing the signature of North Atlantic seawater.

Like tape recorders, the shells of ancient plankton incorporate these seawater signals through time, allowing scientists to approximate when currents grew stronger and when weaker.

Over the last 1.2 million years, the conveyor-like currents strengthened during warm periods and lessened during ice ages, as previously thought.

But at about 950,000 years ago, ocean circulation slowed significantly and stayed weak for 100,000 years.

During that period the planet skipped an interglacial--the warm interval between ice ages. When the system recovered, it entered a new phase of longer, 100,000-year ice age cycles.

After this turning point, deep ocean currents remained weak during ice ages, and ice ages themselves became colder.

"Our discovery of such a major breakdown in the ocean circulation system was a big surprise," said paper co-author Steven Goldstein, a geochemist at LDEO. "It allowed the ice sheets to grow when they should have melted, triggering the first 100,000-year cycle."

Ice ages come and go at predictable intervals based on the changing amount of sunlight that falls on the planet, due to variations in Earth's orbit around the sun.

Orbital changes alone, however, are not enough to explain the sudden switch to longer ice age intervals.

According to one earlier hypothesis for the transition, advancing glaciers in North America stripped away soils in Canada, causing thicker, longer-lasting ice to build up on the remaining bedrock.

Building on that idea, the researchers believe that the advancing ice might have triggered the slowdown in deep ocean currents, leading the oceans to vent less carbon dioxide, which suppressed the interglacial that should have followed.

"The ice sheets must have reached a critical state that switched the ocean circulation system into a weaker mode," said Goldstein.

Neodymium, a key component of cellphones, headphones, computers and wind turbines, also offers a good way of measuring the vigor of ancient ocean currents.

Goldstein and colleagues had used neodymium ratios in deep-sea sediment samples to show that ocean circulation slowed during past ice ages.

They used the same method to show that changes in climate preceded changes in ocean circulation.

A trace element in Earth's crust, neodymium washes into the oceans through erosion from the continents, where natural radioactive decay leaves a signature unique to the land mass from which it originated.

When Goldstein and Lamont colleague Sidney Hemming pioneered this method in the late 1990s, they rarely worried about surrounding neodymium contaminating their samples.

The rise of consumer electronics has changed that.

"I used to say you could do sample processing for neodymium analysis in a parking lot," said Goldstein. "Not anymore."

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734,
Kim Martineau, LDEO, (845) 365-8708,

Related Websites
NSF Grant: Late Quaternary Variability of the Agulhas Thermohaline Valve from Nd Isotopes in Planktonic Foraminifera:
International Ocean Discovery Program:

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Cheryl Dybas | Eurek Alert!
Further information:

Further reports about: Atlantic NSF Ocean circulation cycles dioxide neodymium

More articles from Earth Sciences:

nachricht Revealing glacier flow with animated satellite images
26.11.2015 | European Geosciences Union

nachricht Earth's magnetic field is not about to flip
25.11.2015 | The Earth Institute at Columbia University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Using sphere packing models to explain the structure of forests

26.11.2015 | Ecology, The Environment and Conservation

Dimensionality transition in a newly created material

26.11.2015 | Materials Sciences

Revealing glacier flow with animated satellite images

26.11.2015 | Earth Sciences

More VideoLinks >>>