Ancient marine algae provides clues of climate change im pact on today’s microscopic ocean organisms

The image shows a scanning electron micrograph of fossil coccolithophore species Coccolithus pelagicus. The fossil is from New Jersey and is around 56 million years old. Credit: Paul Bown at UCL

Coccolithophores, a type of marine algae, are prolific in the ocean today and have been for millions of years. These single-celled plankton produce calcite skeletons that are preserved in seafloor sediments after death. Although coccolithophores are microscopic, their abundance makes them key contributors to marine ecosystems and the global carbon cycle.

There is, therefore, much current interest in how coccolithophore calcification might be affected by climate change and ocean acidification, both of which occur as atmospheric carbon dioxide increases.

The research, published in Nature Communications, examined preserved fossil remains of coccolithophores from a period of climate warming and ocean acidification that occurred around 56 million years ago – the Paleocene Eocene Thermal Maximum (PETM) – and provides a much-needed long-term perspective of coccolithophore response to ocean acidification.

Dr Sarah O’Dea, from Ocean and Earth Science at the University of Southampton and lead author of the study, says: “Our results show that climate change significantly altered coccolithophore calcification rates at the PETM and has the potential to be just as significant, perhaps even more so, today. Ultimately then, it is the factors that influence where species live, their abundance, how fast they grow and their ability to adapt to environmental change that is likely to control future coccolithophore calcite production.”

The study investigated two key PETM coccolithophores, Coccolithus pelagicus and Toweius pertusus, both of which are directly related to species that dominate the modern ocean.

It found that calcification rates of C. pelagicus and T. pertusus halved during the PETM, due to changes in environmental factors that influenced their growth. The response of each species was, however, different, and involved intervals of slowed growth in C. pelagicus and an overall reduction in the size of the skeletal components – coccoliths – in T. pertusus. Intriguingly though, there was very little evidence for any response to ocean acidification, other than perhaps a slight thinning of C. pelagicus coccoliths..

Dr Samantha Gibbs, from Ocean and Earth Science at the University of Southampton, who was Dr O’Dea’s PhD supervisor and co-author of the study, says: “A key objective was to record calcification in fossil coccolithophores in a way that enabled direct comparison with measurements from living specimens. Our novel technique involved analysing coccolithophore skeletal remains and applying observations from modern specimens to estimate, for the first time, calcification rates of fossil coccolithophores.”

The study, which also involved researchers from the National Oceanography Centre, Southampton and University College London, was funded by a Natural Environment Research Council (NERC) studentship to Dr O’Dea and a Royal Society Research Fellowship to Dr Gibbs, Senior Research Fellow in Ocean and Earth Science at the University of Southampton, with additional support by the UK Ocean Acidification Research Programme.

Notes for editors
1. The attached image shows a scanning electron micrograph of fossil coccolithophore species Coccolithus pelagicus. The fossil is from New Jersey and is around 56 million years old. Credit: Paul Bown at UCL.

2. A copy of the study ‘Coccolithophore calcification response to past
ocean acidification and climate change’ by Sarah A. O’Dea, Samantha J. Gibbs, Paul R. Bown, Jeremy R. Young, Alex J. Poulton, Cherry Newsam and Paul A. Wilson (DOI: 10.1038/ncomms6363) is available from Media Relations on request.

3. Through world-leading research and enterprise activities, the University of Southampton connects with businesses to create real-world solutions to global issues. Through its educational offering, it works with partners around the world to offer relevant, flexible education, which trains students for jobs not even thought of. This connectivity is what sets Southampton apart from the rest; we make connections and change the world. http://www.southampton.ac.uk/

http://www.southampton.ac.uk/weareconnected

#weareconnected
For more information:

Glenn Harris, Media Relations, University of Southampton, Tel 023 8059 3212, email G.Harris@soton.ac.uk, Twitter: @glennh75

www.soton.ac.uk/mediacentre/

Follow us on twitter: http://twitter.com/unisouthampton

Like us on Facebook: www.facebook.com/unisouthampton

Media Contact

Glenn Harris AlphaGalileo

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

The Sound of the Perfect Coating

Fraunhofer IWS Transfers Laser-based Sound Analysis of Surfaces into Industrial Practice with “LAwave”. Sound waves can reveal surface properties. Parameters such as surface or coating quality of components can be…

Customized silicon chips

…from Saxony for material characterization of printed electronics. How efficient are new materials? Does changing the properties lead to better conductivity? The Fraunhofer Institute for Photonic Microsystems IPMS develops and…

Acetylation: a Time-Keeper of glucocorticoid Sensitivity

Understanding the regulatory mechanism paves the way to enhance the effectiveness of anti-inflammatory therapies and to develop strategies to counteract the negative effects of stress- and age-related cortisol excess. The…

Partners & Sponsors