Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient ice melt unearthed in Antarctic mud

22.07.2013
Global warming 5 million years ago may have caused parts of Antarctica's large ice sheets to melt and sea levels to rise

Global warming five million years ago may have caused parts of Antarctica's large ice sheets to melt and sea levels to rise by approximately 20 metres, scientists report today in the journal Nature Geoscience.

The researchers, from Imperial College London, and their academic partners studied mud samples to learn about ancient melting of the East Antarctic ice sheet. They discovered that melting took place repeatedly between five and three million years ago, during a geological period called Pliocene Epoch, which may have caused sea levels to rise approximately ten metres.

Scientists have previously known that the ice sheets of West Antarctica and Greenland partially melted around the same time. The team say that this may have caused sea levels to rise by a total of 20 metres.

The academics say understanding this glacial melting during the Pliocene Epoch may give us insights into how sea levels could rise as a consequence of current global warming. This is because the Pliocene Epoch had carbon dioxide concentrations similar to now and global temperatures comparable to those predicted for the end of this century.

Dr Tina Van De Flierdt, co-author from the Department of Earth Science and Engineering at Imperial College London, says: "The Pliocene Epoch had temperatures that were two or three degrees higher than today and similar atmospheric carbon dioxide levels to today. Our study underlines that these conditions have led to a large loss of ice and significant rises in global sea level in the past. Scientists predict that global temperatures of a similar level may be reached by the end of this century, so it is very important for us to understand what the possible consequences might be."

The East Antarctic ice sheet is the largest ice mass on Earth, roughly the size of Australia. The ice sheet has fluctuated in size since its formation 34 million years ago, but scientists have previously assumed that it had stabilised around 14 million years ago.

The team in today's study were able to determine that the ice sheet had partially melted during this "stable" period by analysing the chemical content of mud in sediments. These were drilled from depths of more than three kilometres below sea level off the coast of Antarctica.

Analysing the mud revealed a chemical fingerprint that enabled the team to trace where it came from on the continent. They discovered that the mud originated from rocks that are currently hidden under the ice sheet. The only way that significant amounts of this mud could have been deposited as sediment in the sea would be if the ice sheet had retreated inland and eroded these rocks, say the team.

The academics suggest that the melting of the ice sheet may have been caused in part by the fact that some of it rests in basins below sea level. This puts the ice in direct contact with seawater and when the ocean warms, as it did during the Pliocene, the ice sheet becomes vulnerable to melting.

Carys Cook, co-author and research postgraduate from the Grantham Institute for Climate Change at Imperial, adds: "Scientists previously considered the East Antarctic ice sheet to be more stable than the much smaller ice sheets in West Antarctica and Greenland, even though very few studies of East Antarctic ice sheet have been carried out. Our work now shows that the East Antarctic ice sheet has been much more sensitive to climate change in the past than previously realised. This finding is important for our understanding of what may happen to the Earth if we do not tackle the effects of climate change."

The next step will see the team analysing sediment samples to determine how quickly the East Antarctic ice sheet melted during the Pliocene. This information could be useful in the future for predicting how quickly the ice sheet could melt as a result of global warming.

For more information contact:

Colin Smith
Senior Research Media Officer - Faculty of Engineering
Tel: +44 (0)20 7594 6712
Email: cd.smith@imperial.ac.uk
Notes to editors
1. 1. 'Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth', Nature Geoscience journal, published 21 July 2013

Carys P. Cook1,2, Tina van de Flierdt2, Trevor Williams3, Sidney R. Hemming3,4, Masao Iwai5, Munemasa Kobayashi5, Francisco J. Jimenez-Espejo6,7, Carlota Escutia7, Jhon Jairo González7, Boo-Keun Khim8, Robert M. McKay9, Sandra Passchier10, Steven M. Bohaty11, Christina R. Riesselman12,13, Lisa Tauxe14, Saiko Sugisaki14,15, Alberto Lopez Galindo7, Molly O. Patterson9, Francesca Sangiorgi16, Elizabeth L. Pierce17, Henk Brinkhuis16 and IODP Expedition 318 Scientists

1 The Grantham Institute for Climate Change, Imperial College London, South Kensington Campus, Prince Consort Road, London SW7 2AZ, UK

2 Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, Prince Consort Road, London SW7 2AZ, UK

3 Lamont Doherty Earth Observatory of Columbia University, PO Box 1000, 61 Route 9W, Palisades, New York 10964, USA

4 Department of Earth and Environmental Sciences, Columbia University, New York 10027, USA

5 Department of Natural Science, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan

6 Department of Earth and Planetary Sciences, Graduate School of Environmental Studies, Nagoya University, D2-2 (510), Furo-cho, Chikusa-ku, Nagoya464-8601, Japan

7 Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR, 18100 Armilla, Spain

8 Department of Oceanography, Pusan National University,Busan 609-735, Republic of Korea

9 Antarctic Research Centre, Victoria University of Wellington, PO Box 600,Wellington 6140, New Zealand

10 Earth and Environmental Studies, Montclair State University, 252 Mallory Hall, 1 Normal Avenue, Montclair, New Jersey 07043, USA

11 Ocean and Earth Science,National Oceanography Centre Southampton, University of Southampton, European Way, SO14 3ZH, Southampton, UK

12 Department of Geology,University of Otago, PO Box 56, Dunedin 9054, New Zealand

13 Department of Marine Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand

14 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0220, USA

15 Department of Earth and Planetary Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

16 Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Laboratory of Palaeobotany and Palynology, Budapestlaan 4, 3584CD, Utrecht, The Netherlands

17 Department of Geosciences,Wellesley College, 106 Central Street,Wellesley, Massachusetts 02481, USA

2. About Imperial College London

Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.

In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

Colin Smith | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>