Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient ice melt unearthed in Antarctic mud

22.07.2013
Global warming 5 million years ago may have caused parts of Antarctica's large ice sheets to melt and sea levels to rise

Global warming five million years ago may have caused parts of Antarctica's large ice sheets to melt and sea levels to rise by approximately 20 metres, scientists report today in the journal Nature Geoscience.

The researchers, from Imperial College London, and their academic partners studied mud samples to learn about ancient melting of the East Antarctic ice sheet. They discovered that melting took place repeatedly between five and three million years ago, during a geological period called Pliocene Epoch, which may have caused sea levels to rise approximately ten metres.

Scientists have previously known that the ice sheets of West Antarctica and Greenland partially melted around the same time. The team say that this may have caused sea levels to rise by a total of 20 metres.

The academics say understanding this glacial melting during the Pliocene Epoch may give us insights into how sea levels could rise as a consequence of current global warming. This is because the Pliocene Epoch had carbon dioxide concentrations similar to now and global temperatures comparable to those predicted for the end of this century.

Dr Tina Van De Flierdt, co-author from the Department of Earth Science and Engineering at Imperial College London, says: "The Pliocene Epoch had temperatures that were two or three degrees higher than today and similar atmospheric carbon dioxide levels to today. Our study underlines that these conditions have led to a large loss of ice and significant rises in global sea level in the past. Scientists predict that global temperatures of a similar level may be reached by the end of this century, so it is very important for us to understand what the possible consequences might be."

The East Antarctic ice sheet is the largest ice mass on Earth, roughly the size of Australia. The ice sheet has fluctuated in size since its formation 34 million years ago, but scientists have previously assumed that it had stabilised around 14 million years ago.

The team in today's study were able to determine that the ice sheet had partially melted during this "stable" period by analysing the chemical content of mud in sediments. These were drilled from depths of more than three kilometres below sea level off the coast of Antarctica.

Analysing the mud revealed a chemical fingerprint that enabled the team to trace where it came from on the continent. They discovered that the mud originated from rocks that are currently hidden under the ice sheet. The only way that significant amounts of this mud could have been deposited as sediment in the sea would be if the ice sheet had retreated inland and eroded these rocks, say the team.

The academics suggest that the melting of the ice sheet may have been caused in part by the fact that some of it rests in basins below sea level. This puts the ice in direct contact with seawater and when the ocean warms, as it did during the Pliocene, the ice sheet becomes vulnerable to melting.

Carys Cook, co-author and research postgraduate from the Grantham Institute for Climate Change at Imperial, adds: "Scientists previously considered the East Antarctic ice sheet to be more stable than the much smaller ice sheets in West Antarctica and Greenland, even though very few studies of East Antarctic ice sheet have been carried out. Our work now shows that the East Antarctic ice sheet has been much more sensitive to climate change in the past than previously realised. This finding is important for our understanding of what may happen to the Earth if we do not tackle the effects of climate change."

The next step will see the team analysing sediment samples to determine how quickly the East Antarctic ice sheet melted during the Pliocene. This information could be useful in the future for predicting how quickly the ice sheet could melt as a result of global warming.

For more information contact:

Colin Smith
Senior Research Media Officer - Faculty of Engineering
Tel: +44 (0)20 7594 6712
Email: cd.smith@imperial.ac.uk
Notes to editors
1. 1. 'Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth', Nature Geoscience journal, published 21 July 2013

Carys P. Cook1,2, Tina van de Flierdt2, Trevor Williams3, Sidney R. Hemming3,4, Masao Iwai5, Munemasa Kobayashi5, Francisco J. Jimenez-Espejo6,7, Carlota Escutia7, Jhon Jairo González7, Boo-Keun Khim8, Robert M. McKay9, Sandra Passchier10, Steven M. Bohaty11, Christina R. Riesselman12,13, Lisa Tauxe14, Saiko Sugisaki14,15, Alberto Lopez Galindo7, Molly O. Patterson9, Francesca Sangiorgi16, Elizabeth L. Pierce17, Henk Brinkhuis16 and IODP Expedition 318 Scientists

1 The Grantham Institute for Climate Change, Imperial College London, South Kensington Campus, Prince Consort Road, London SW7 2AZ, UK

2 Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, Prince Consort Road, London SW7 2AZ, UK

3 Lamont Doherty Earth Observatory of Columbia University, PO Box 1000, 61 Route 9W, Palisades, New York 10964, USA

4 Department of Earth and Environmental Sciences, Columbia University, New York 10027, USA

5 Department of Natural Science, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan

6 Department of Earth and Planetary Sciences, Graduate School of Environmental Studies, Nagoya University, D2-2 (510), Furo-cho, Chikusa-ku, Nagoya464-8601, Japan

7 Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR, 18100 Armilla, Spain

8 Department of Oceanography, Pusan National University,Busan 609-735, Republic of Korea

9 Antarctic Research Centre, Victoria University of Wellington, PO Box 600,Wellington 6140, New Zealand

10 Earth and Environmental Studies, Montclair State University, 252 Mallory Hall, 1 Normal Avenue, Montclair, New Jersey 07043, USA

11 Ocean and Earth Science,National Oceanography Centre Southampton, University of Southampton, European Way, SO14 3ZH, Southampton, UK

12 Department of Geology,University of Otago, PO Box 56, Dunedin 9054, New Zealand

13 Department of Marine Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand

14 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0220, USA

15 Department of Earth and Planetary Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

16 Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Laboratory of Palaeobotany and Palynology, Budapestlaan 4, 3584CD, Utrecht, The Netherlands

17 Department of Geosciences,Wellesley College, 106 Central Street,Wellesley, Massachusetts 02481, USA

2. About Imperial College London

Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.

In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

Colin Smith | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>