Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Greenland methane study good news for planet

24.04.2009
An analysis of ancient Greenland ice suggests a spike in the greenhouse gas methane about 11,600 years ago originated from wetlands rather than the ocean floor or from permafrost, a finding that is good news according to the University of Colorado at Boulder scientist who led the study.

Methane bound up in ocean sediments and permafrost, called methane clathrate, has been a concern to scientists because of its huge volume, greenhouse gas potency and potential for release during periods of warming, said Vasilii Petrenko, a CU-Boulder postdoctoral fellow and lead study author.

If just 10 percent of methane from clathrates -- an ice-like substance composed of methane and water -- were suddenly released into Earth's atmosphere, the resulting increase in the greenhouse effect would be equivalent to a 10-fold increase in atmospheric carbon dioxide, he said.

Using carbon 14 as a "tracer" to date and distinguish wetland methane from methane clathrates, an international team determined the methane jump 11,600 years ago likely emanated primarily from Earth's wetlands. "From a global warming standpoint, this appears to be good news," said Petrenko of CU-Boulder's Institute of Arctic and Alpine Research, lead author on a paper that was published in Science on April 24.

Methane is the third most powerful greenhouse gas behind water vapor and CO2 and accounts for roughly 20 percent of the human-caused increase in the greenhouse effect.

As Earth emerged from the last ice age, temperatures in some places in the Northern Hemisphere shot up about 18 degrees Fahrenheit in just 20 years, said Petrenko. Scientists have been concerned that such abrupt warming events could trigger huge oceanic methane "burps" caused by the dissociation of seafloor clathrates, providing a positive climate feedback mechanism that could drive up Earth's temperatures still further.

"If we found that clathrates release a lot of methane to the atmosphere during abrupt episodes of warming, that could signal big trouble for the planet, " said Petrenko. "But even though wetlands appear be the primary source, it's still something to be concerned about."

Methane emitted from human activities like rice cultivation, livestock, the burning of grasslands, forests and wood fuels, gas leaks from fossil fuel production and waste management activities have nearly tripled methane concentrations in Earth's atmosphere in the past 250 years, Petrenko said. The amount of carbon held in methane clathrate deposits on Earth may equal the amount of carbon in all oil, coal and gas reserves on the planet, he said.

Study co-authors were from the Scripps Institution of Oceanography, Oregon State University, the Australian Nuclear Science and Technology Organisation, the National Institute of Water and Atmospheric Research in New Zealand, Danish Technical University and the Commonwealth Scientific and Industrial Research Organisation in Australia. Petrenko conducted most of the research as part of his doctoral thesis at the Scripps Institution of Oceanography under Professor Jeffrey Severinghaus.

The research team extracted several tons of ancient ice from the western margin of the Greenland ice sheet at a site called Pakitsoq, the largest ice samples ever recovered for a climate change study. The researchers cut the ice into blocks with electric chain saws, dumped 17 cubic feet at a time into a vacuum melting tank heated by powerful propane torches, and transferred ancient air released from bubbles in the ice into cylinders for subsequent laboratory analysis, Petrenko said.

The effort, which lasted five field-seasons, was "an undertaking of epic proportions," said Petrenko. "This was the first measurement of its kind, and we really pushed the envelope," he said. "It represents a major advance in analytical methods for studying ancient ice."

Methane clathrates are only stable in conditions that combine cold temperatures and high pressures. Some scientists suspect that a swift and massive warming in the early Cenozoic era about 56 million years ago may have been triggered by huge methane releases from clathrates into the atmosphere, Petrenko said.

Methane levels in Earth's atmosphere increased about 2 percent from about A.D. 1 to 1000 and decreased by 2 percent from 1000 to 1700, which may have been due in part to decreased landscape burning by indigenous people in the Americas devastated by introduced diseases, according to a 2005 CU-Boulder study. About 60 percent of atmospheric methane is now generated from human-related activities, according to the International Panel on Climate Change.

The 2009 Greenland ice study was funded by the National Science Foundation, the American Chemical Society and several other agencies. Petrenko's postdoctoral fellowship at CU-Boulder is funded by The University Corporation for Atmospheric Research.

Contact: Vasilii Petrenko, 303-492-7132 Vasilii.petrenko@colorado.edu
Jim Scott, 303-492-3114

Vasilii Petrenko | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>