Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Greenland methane study good news for planet

24.04.2009
An analysis of ancient Greenland ice suggests a spike in the greenhouse gas methane about 11,600 years ago originated from wetlands rather than the ocean floor or from permafrost, a finding that is good news according to the University of Colorado at Boulder scientist who led the study.

Methane bound up in ocean sediments and permafrost, called methane clathrate, has been a concern to scientists because of its huge volume, greenhouse gas potency and potential for release during periods of warming, said Vasilii Petrenko, a CU-Boulder postdoctoral fellow and lead study author.

If just 10 percent of methane from clathrates -- an ice-like substance composed of methane and water -- were suddenly released into Earth's atmosphere, the resulting increase in the greenhouse effect would be equivalent to a 10-fold increase in atmospheric carbon dioxide, he said.

Using carbon 14 as a "tracer" to date and distinguish wetland methane from methane clathrates, an international team determined the methane jump 11,600 years ago likely emanated primarily from Earth's wetlands. "From a global warming standpoint, this appears to be good news," said Petrenko of CU-Boulder's Institute of Arctic and Alpine Research, lead author on a paper that was published in Science on April 24.

Methane is the third most powerful greenhouse gas behind water vapor and CO2 and accounts for roughly 20 percent of the human-caused increase in the greenhouse effect.

As Earth emerged from the last ice age, temperatures in some places in the Northern Hemisphere shot up about 18 degrees Fahrenheit in just 20 years, said Petrenko. Scientists have been concerned that such abrupt warming events could trigger huge oceanic methane "burps" caused by the dissociation of seafloor clathrates, providing a positive climate feedback mechanism that could drive up Earth's temperatures still further.

"If we found that clathrates release a lot of methane to the atmosphere during abrupt episodes of warming, that could signal big trouble for the planet, " said Petrenko. "But even though wetlands appear be the primary source, it's still something to be concerned about."

Methane emitted from human activities like rice cultivation, livestock, the burning of grasslands, forests and wood fuels, gas leaks from fossil fuel production and waste management activities have nearly tripled methane concentrations in Earth's atmosphere in the past 250 years, Petrenko said. The amount of carbon held in methane clathrate deposits on Earth may equal the amount of carbon in all oil, coal and gas reserves on the planet, he said.

Study co-authors were from the Scripps Institution of Oceanography, Oregon State University, the Australian Nuclear Science and Technology Organisation, the National Institute of Water and Atmospheric Research in New Zealand, Danish Technical University and the Commonwealth Scientific and Industrial Research Organisation in Australia. Petrenko conducted most of the research as part of his doctoral thesis at the Scripps Institution of Oceanography under Professor Jeffrey Severinghaus.

The research team extracted several tons of ancient ice from the western margin of the Greenland ice sheet at a site called Pakitsoq, the largest ice samples ever recovered for a climate change study. The researchers cut the ice into blocks with electric chain saws, dumped 17 cubic feet at a time into a vacuum melting tank heated by powerful propane torches, and transferred ancient air released from bubbles in the ice into cylinders for subsequent laboratory analysis, Petrenko said.

The effort, which lasted five field-seasons, was "an undertaking of epic proportions," said Petrenko. "This was the first measurement of its kind, and we really pushed the envelope," he said. "It represents a major advance in analytical methods for studying ancient ice."

Methane clathrates are only stable in conditions that combine cold temperatures and high pressures. Some scientists suspect that a swift and massive warming in the early Cenozoic era about 56 million years ago may have been triggered by huge methane releases from clathrates into the atmosphere, Petrenko said.

Methane levels in Earth's atmosphere increased about 2 percent from about A.D. 1 to 1000 and decreased by 2 percent from 1000 to 1700, which may have been due in part to decreased landscape burning by indigenous people in the Americas devastated by introduced diseases, according to a 2005 CU-Boulder study. About 60 percent of atmospheric methane is now generated from human-related activities, according to the International Panel on Climate Change.

The 2009 Greenland ice study was funded by the National Science Foundation, the American Chemical Society and several other agencies. Petrenko's postdoctoral fellowship at CU-Boulder is funded by The University Corporation for Atmospheric Research.

Contact: Vasilii Petrenko, 303-492-7132 Vasilii.petrenko@colorado.edu
Jim Scott, 303-492-3114

Vasilii Petrenko | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>