Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ancient global warming episode holds clues to future climate

When scientists take Earth's temperature, they usually use thermometers. But when scientists want to figure out Earth's temperature in the past, they have to rely on other tools.

One of these is deep-sea sediment cores (see Figure). Deep-sea sediments contain fossil remains of tiny marine creatures and other materials that sink to the ocean floor. Over millions of years, these materials pile up and build climate archives that tell stories about Earth's history. Today, scientists recover those archives during ocean drilling expeditions aboard research vessels such as the JOIDES Resolution (see Figure).

Now a team of scientists, led by Richard Zeebe of the University of Hawai'i at Manoa's School of Ocean and Earth Science and Technology, has examined data from sediment cores from around the world to study an ancient global warming episode, known as the Paleocene-Eocene Thermal Maximum. This warming event occurred about 55 million years ago and provides important clues about what the future may hold. By studying the past, the researchers contribute to better forecasting the future – a principle once expressed by the English historian Edward Gibbon: "I know no way of judging of the future but by the past."

There is little doubt among scientists that the Earth is warming because of carbon dioxide emissions from human activities. But exactly how much the Earth will warm – say until the end of the 21st century – is still uncertain. In their study published in the journal Nature Geoscience, Zeebe and his team help to resolve the question by studying a possible analog in the past. Using sediment archives and theoretical tools, they provide estimates of the amount of carbon dioxide in the atmosphere during the warming episode 55 million years ago.

The team had to go back that far in time because this event may be the only one during the past 55 million years of similar scale and pace as the current human disruption. At that time, global surface temperatures rose by 5°C within a few thousand years. At nearly the same time, a large amount of carbon was released, probably from the dissociation of oceanic methane hydrates. By comparing the change in ancient temperature and carbon dioxide levels, Zeebe and his team provide clues about the magnitude of global warming during large and rapid increases of greenhouse gases.

What the team found was quite unexpected. Based on current knowledge about Earth's climate system, they expected a three- to eightfold increase in atmospheric carbon dioxide levels to explain the 5°C warming. Yet, they found only a less-than-twofold increase.

Zeebe, an oceanographer at UH Manoa, says: "We were pretty surprised that the increase in atmospheric carbon dioxide turned out to be so small. To explain the entire warming, you would need a whole lot more carbon."

The consequence is that other mechanisms must have considerably contributed to the warming 55 million years ago. Unfortunately, these mechanisms are unknown at present.

"There are a few ideas what may have contributed to the additional warming. But I don't think we fully understand these events of intense and rapid global warming," says Zeebe.

If the additional warming in the past was a response to rising carbon dioxide, then also future warming could be much stronger than anticipated. Undoubtedly, the Earth was a different place 55 million years ago and comparison with today's situation is imperfect. Nevertheless, the work of Zeebe and his co-workers suggests that the future climate could hold some surprises.

"By continuing to put these huge amounts of carbon dioxide in the atmosphere, we're gambling with climate and the outcome is still uncertain," Zeebe says.

Zeebe, R. E., Zachos, J. C., and Dickens, G. R. Carbon dioxide forcing alone insufficient to explain Paleocene-Eocene Thermal Maximum warming. Nature Geoscience, Advance Online Publication, July 13, 2009.

The University of Hawai`i at Manoa serves approximately 20,000 students pursuing 225 different degrees. Coming from every Hawaiian island, every state in the nation, and more than 100 countries, UH Manoa students matriculate in an enriching environment for the global exchange of ideas.

Richard E. Zeebe | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>