Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Flying Pterosaur Also Sailed Seas

21.10.2009
At first glance, the 115-million-year-old pterosaur looks like a Cretaceous design disaster. With a tail rudder on its head and a spindly, bat-like body, Tapejara wellnhoferi may appear fit for nothing but extinction.

However, researchers at Texas Tech University, the University of Kansas and University of Florida have found that the animal’s strange body actually made it a mastery of nature’s drawing boards. Not only could it walk and fly, but also it could sail across the sea.

Tapejara, a native coastal dweller of what is now Brazil, was an excellent flyer that also had an innate nautical knowledge of sailing, said Sankar Chatterjee, Horn Professor of Geosciences and curator of paleontology at the Museum of Texas Tech University.

Much like a Transformer, it could manipulate its body to match the same configuration as the world’s fastest modern windsurfers and sail across the surface of the ocean in search of prey. Then, it could take off quickly if the toothy underwater predators of its time got too close for comfort.

“The free ride from the wind would allow these animals to cover a large territory in search of food,” Chatterjee said. “Apparently, these pterosaurs knew the secrets of sailing that many novice sailors do not.”

Chatterjee and his research team determined Tapejara’s sailing ability by studying the aero-hydrodynamics of pterosaur wings through physics and computer simulation. He will present his findings Oct. 21 at the Geological Society of America’s annual meeting in Portland, Ore.

His research team included David Alexander, an animal flight expert from the University of Kansas, aeronautical engineer Rick Lind from the University of Florida and technician Andy Gedeon from Texas Tech.

The basic design of Tapejara is a cross between two types of sailing vessels, Chatterjee said. The “hull” of the pterosaur is formed by dipping the breast bone into the water. The two hind legs directed backward functioned like lateral hulls. This design allowed the animal to skate on top of the water on triple surfboards just like the Wiebel – the world’s fastest trimaran windsurfer. This hull design minimizes contact with water, offers stability and enhances speed.

Rather than depend on a tailwind for propulsion, which doesn’t maximize speed, the animal probably opted to use a two-mast-and-jib design.

The long, narrow wings of Tapejara and the tall cranial rudder mimicked those of a two-masted schooner with a jib, he said. The animal probably lifted its wings up vertically to act like sails during surface swimming. Rod-like structures called actinofibrils served as sail battens, giving stiffness to the wing skin so it wouldn’t tear from the breeze. The cranial rudder functioned as a sailboat’s jib and helped with direction control.

“In downwind sailing, the wings act like parachutes, and the air is decelerated,” Chatterjee said. “Most likely, Tapejara would orient the wings in a fore-and-aft position like that of a sailing boat to exploit upwind sailing. The tilted cranial sail would create a slot effect like a sailboat, which produces a greater lift by improving airflow over the main sails. With the wind coming from ahead and to the side at about a 45-degree angle to the body, Tapejara could achieve speeds exceeding the wind speed. The fastest way to sail is with the wind coming from the side.”

Pterosaurs were highly successful flying reptiles that lived 228 to 65 million years ago from the late Triassic Period to the end of the Cretaceous Period. They dominated the sky, swooping over the heads of other dinosaurs. Their sizes ranged from a sparrow to a Cessna plane with a wingspan of 35 feet, he said.

This isn’t the first time Chatterjee and Lind have studied the animal. Last October, they announced they are developing a 30-inch robotic spy plane called pterodrone and modeled after Tapejara.

The drone, featuring the same strange design of a rudder at the nose of the craft instead of the tail, can gather data from sights, sounds and smells in urban combat zones and transmit information back to a command center.

Also, this is the second animal Chatterjee has studied that beat mankind to the punch with a design. In 2006, his research found that a 125-million-year-old feathered dinosaur from China named Microraptor gui glided through the air with winglets on its feet that worked just like the wings of a bi-plane.

CONTACT: Sankar Chatterjee, curator of paleontology at the Museum of Texas Tech, (806) 787-4332, or sankar.chatterjee@ttu.edu.

John Davis | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Earth Sciences:

nachricht An Atom Trap for Water Dating
28.02.2017 | Universität Heidelberg

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Cells adapt ultra-rapidly to zero gravity

28.02.2017 | Health and Medicine

An Atom Trap for Water Dating

28.02.2017 | Earth Sciences

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>