Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Flying Pterosaur Also Sailed Seas

21.10.2009
At first glance, the 115-million-year-old pterosaur looks like a Cretaceous design disaster. With a tail rudder on its head and a spindly, bat-like body, Tapejara wellnhoferi may appear fit for nothing but extinction.

However, researchers at Texas Tech University, the University of Kansas and University of Florida have found that the animal’s strange body actually made it a mastery of nature’s drawing boards. Not only could it walk and fly, but also it could sail across the sea.

Tapejara, a native coastal dweller of what is now Brazil, was an excellent flyer that also had an innate nautical knowledge of sailing, said Sankar Chatterjee, Horn Professor of Geosciences and curator of paleontology at the Museum of Texas Tech University.

Much like a Transformer, it could manipulate its body to match the same configuration as the world’s fastest modern windsurfers and sail across the surface of the ocean in search of prey. Then, it could take off quickly if the toothy underwater predators of its time got too close for comfort.

“The free ride from the wind would allow these animals to cover a large territory in search of food,” Chatterjee said. “Apparently, these pterosaurs knew the secrets of sailing that many novice sailors do not.”

Chatterjee and his research team determined Tapejara’s sailing ability by studying the aero-hydrodynamics of pterosaur wings through physics and computer simulation. He will present his findings Oct. 21 at the Geological Society of America’s annual meeting in Portland, Ore.

His research team included David Alexander, an animal flight expert from the University of Kansas, aeronautical engineer Rick Lind from the University of Florida and technician Andy Gedeon from Texas Tech.

The basic design of Tapejara is a cross between two types of sailing vessels, Chatterjee said. The “hull” of the pterosaur is formed by dipping the breast bone into the water. The two hind legs directed backward functioned like lateral hulls. This design allowed the animal to skate on top of the water on triple surfboards just like the Wiebel – the world’s fastest trimaran windsurfer. This hull design minimizes contact with water, offers stability and enhances speed.

Rather than depend on a tailwind for propulsion, which doesn’t maximize speed, the animal probably opted to use a two-mast-and-jib design.

The long, narrow wings of Tapejara and the tall cranial rudder mimicked those of a two-masted schooner with a jib, he said. The animal probably lifted its wings up vertically to act like sails during surface swimming. Rod-like structures called actinofibrils served as sail battens, giving stiffness to the wing skin so it wouldn’t tear from the breeze. The cranial rudder functioned as a sailboat’s jib and helped with direction control.

“In downwind sailing, the wings act like parachutes, and the air is decelerated,” Chatterjee said. “Most likely, Tapejara would orient the wings in a fore-and-aft position like that of a sailing boat to exploit upwind sailing. The tilted cranial sail would create a slot effect like a sailboat, which produces a greater lift by improving airflow over the main sails. With the wind coming from ahead and to the side at about a 45-degree angle to the body, Tapejara could achieve speeds exceeding the wind speed. The fastest way to sail is with the wind coming from the side.”

Pterosaurs were highly successful flying reptiles that lived 228 to 65 million years ago from the late Triassic Period to the end of the Cretaceous Period. They dominated the sky, swooping over the heads of other dinosaurs. Their sizes ranged from a sparrow to a Cessna plane with a wingspan of 35 feet, he said.

This isn’t the first time Chatterjee and Lind have studied the animal. Last October, they announced they are developing a 30-inch robotic spy plane called pterodrone and modeled after Tapejara.

The drone, featuring the same strange design of a rudder at the nose of the craft instead of the tail, can gather data from sights, sounds and smells in urban combat zones and transmit information back to a command center.

Also, this is the second animal Chatterjee has studied that beat mankind to the punch with a design. In 2006, his research found that a 125-million-year-old feathered dinosaur from China named Microraptor gui glided through the air with winglets on its feet that worked just like the wings of a bi-plane.

CONTACT: Sankar Chatterjee, curator of paleontology at the Museum of Texas Tech, (806) 787-4332, or sankar.chatterjee@ttu.edu.

John Davis | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Earth Sciences:

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

nachricht World's first solar fuels reactor for night passes test
21.02.2018 | SolarPACES

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>