Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Dry Spells Offer Clues About the Future of Drought

06.12.2011
As parts of Central America and the U.S. Southwest endure some of the worst droughts to hit those areas in decades, scientists have unearthed new evidence about ancient dry spells that suggest the future could bring even more serious water shortages. Three researchers speaking at the annual meeting of the American Geophysical Union in San Francisco on Dec. 5, 2011, presented new findings about the past and future of drought.

Pre-Columbian Collapse

Ben Cook, a climatologist affiliated with NASA's Goddard Institute for Space Studies (GISS) and Columbia University's Lamont-Doherty Earth Observatory in New York City, highlighted new research that indicates the ancient Meso-American civilizations of the Mayans and Aztecs likely amplified droughts in the Yucatán Peninsula and southern and central Mexico by clearing rainforests to make room for pastures and farmland.

Converting forest to farmland can increase the reflectivity, or albedo, of the land surface in ways that affect precipitation patterns. "Farmland and pastures absorb slightly less energy from the sun than the rainforest because their surfaces tend to be lighter and more reflective," explained Cook. "This means that there’s less energy available for convection and precipitation."

Cook and colleagues used a high-resolution climate model developed at GISS to run simulations that compared how patterns of vegetation cover during pre-Columbian (before 1492 C.E.) and post-Columbian periods affected precipitation and drought in Central America. The pre-Columbian era saw widespread deforestation on the Yucatán Peninsula and throughout southern and central Mexico. During the post-Columbian period, forests regenerated as native populations declined and farmlands and pastures were abandoned.

Cook's simulations include input from a newly published land-cover reconstruction that is one of the most complete and accurate records of human vegetation changes available. The results are unmistakable: Precipitation levels declined by a considerable amount -- generally 10 to 20 percent -- when deforestation was widespread. Precipitation records from stalagmites, a type of cave formation affected by moisture levels that paleoclimatologists use to deduce past climate trends, in the Yucatán agree well with Cook's model results.

The effect is most noticeable over the Yucatán Peninsula and southern Mexico, areas that overlapped with the centers of the Mayan and Aztec civilizations and had high levels of deforestation and the most densely concentrated populations. Rainfall levels declined, for example, by as much as 20 percent over parts of the Yucatán Peninsula between 800 C.E. and 950 C.E.

Cook's study supports previous research that suggests drought, amplified by deforestation, was a key factor in the rapid collapse of the Mayan empire around 950 C.E. In 2010, Robert Oglesby, a climate modeler based at the University of Nebraska, published a study in the Journal of Geophysical Research that showed that deforestation likely contributed to the Mayan collapse. Though Oglesby and Cook's modeling reached similar conclusions, Cook had access to a more accurate and reliable record of vegetation changes.

During the peak of Mayan civilization between 800 C.E. and 950 C.E., the land cover reconstruction Cook based his modeling on indicates that the Maya had left only a tiny percentage of the forests on the Yucatán Peninsula intact. By the period between 1500 C.E. and 1650 C.E., in contrast, after the arrival of Europeans had decimated native populations, natural vegetation covered nearly all of the Yucatán. In modern times, deforestation has altered some areas near the coast, but a large majority of the peninsula’s forests remain intact.

"I wouldn't argue that deforestation causes drought or that it's entirely responsible for the decline of the Maya, but our results do show that deforestation can bias the climate toward drought and that about half of the dryness in the pre-Colonial period was the result of deforestation," Cook said.

Northeastern Megadroughts

The last major drought to affect the Northeast occurred in the 1960s, persisted for about three years and took a major toll on the region. Dorothy Peteet, a paleoclimatologist also affiliated with NASA GISS and Columbia University, has uncovered evidence that shows far more severe droughts have occurred in the Northeast.

By analyzing sediment cores collected from several tidal marshes in the Hudson River Valley, Peteet and her colleagues at Lamont-Doherty have found evidence that at least three major dry spells have occurred in the Northeast within the last 6,000 years. The longest, which corresponds with a span of time known as the Medieval Warm Period, lasted some 500 years and began around 850 C.E. The other two took place more than 5,000 years ago. They were shorter, only about 20 to 40 years, but likely more severe.

"People don't generally think about the Northeast as an area that can experience drought, but there's geologic evidence that shows major droughts can and do occur," Peteet said. "It's something scientists can't ignore. What we’re finding in these sediment cores has big implications for the region."

Peteet's team detected all three droughts using a method called X-ray fluorescence spectroscopy. They used the technique on a core collected at Piermont Marsh in New York to search for characteristic elements -- such as bromine and calcium -- that are more likely to occur at the marsh during droughts.

Fresh water from the Hudson River and salty water from the Atlantic Ocean were both predominant in Piermont Marsh at different time periods, but saltwater moves upriver during dry periods as the amount of fresh water entering the marsh declines. Peteet's team detected extremely high levels of both bromine and calcium, both of them indicators of the presence of saltwater and the existence of drought, in sections of the sediment cores corresponding to 5,745 and 5,480 years ago.

During the Medieval Warm Period, the researchers also found striking increases in the abundance of certain types of pollen species, especially pine and hickory, that indicate a dry climate. Before the Medieval Warm Period, in contrast, there were more oaks, which prefer wetter conditions. They also found a thick layer of charcoal demonstrating that wildfires, which are more frequent during droughts, were common during the Medieval Warm Period.

"We still need to do more research before we can say with confidence how widespread or frequent droughts in the Northeast have been," Peteet said. There are certain gaps in the cores Peteet's team studied, for example, that she plans to investigate in greater detail. She also expects to expand the scope of the project to other marshes and estuaries in the Northeast and to collaborate with climate modelers to begin teasing out the factors that cause droughts to occur in the region.

The Future of Food

Climate change, with its potential to redistribute water availability around the globe by increasing rainfall in some areas while worsening drought in others, might negatively impact crop yields in certain regions of the world.

New research conducted by Princeton University hydrologist Justin Sheffield shows that areas of the developing world that are drought-prone and have growing population and limited capabilities to store water, such as sub-Saharan Africa, will be the ones most at risk of seeing their crops decrease their yields in the future.

Sheffield and his team ran hydrological model simulations for the 20th and 21st centuries and looked at how drought might change in the future according to different climate change scenarios. They found that the total area affected by drought has not changed significantly over the past 50 years globally.

However, the model shows reductions in precipitation and increases in evaporative demand are projected to increase the frequency of short-term droughts. They also found that the area across sub-Saharan Africa experiencing drought will rise by as much as twofold by mid-21st century and threefold by the end of the century.

When the team analyzed what these changes would mean for future agricultural productivity around the globe, they found that the impact on sub-Saharan Africa would be especially strong.

Agricultural productivity depends on a number of factors beyond water availability including soil conditions, available technologies and crop varieties. For some regions of sub-Saharan Africa, the researchers found that agricultural productivity will likely decline by over 20 percent by mid-century due to drying and warming.

Adam Voiland and Maria José-Viñas
NASA's Goddard Space Flight Center

Adam Voiland | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/ancient-dry.html

More articles from Earth Sciences:

nachricht Filling the gap: High-latitude volcanic eruptions also have global impact
20.11.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Antarctic landscape insights keep ice loss forecasts on the radar
20.11.2017 | University of Edinburgh

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>