Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient corals provide insight on the future of Caribbean reefs

08.04.2011
University of Miami scientists using the geologic record of corals to understand how reef ecosystems might respond to climate change

Climate change is already widely recognized to be negatively affecting coral reef ecosystems around the world, yet the long-term effects are difficult to predict. University of Miami (UM) scientists are using the geologic record of Caribbean corals to understand how reef ecosystems might respond to climate change expected for this century. The findings are published in the current issue of the journal Geology.

The Pliocene epoch--more than 2.5 million years ago--can provide some insight into what coral reefs in the future may look like. Estimates of carbon dioxide and global mean temperatures of the period are similar to environmental conditions expected in the next 100 years, explains James Klaus, assistant professor in the Department of Geological Sciences, College of Arts and Sciences, at UM and lead investigator of this project.

"If the coming century truly is a return to the Pliocene conditions, corals will likely survive, while well-developed reefs may not," says Klaus, who has a secondary appointment in the Rosenstiel School of Marine and Atmospheric Science (RSMAS), at UM. "This could be detrimental to the fish and marine species that rely on the reef structure for their habitat."

The study looks at the fossil records of coral communities from nine countries around the Caribbean region to better understand the nature of these ecosystems during the Pliocene. Today, fossil reefs are often found far from the sea, exposed in road cuts, quarry excavations, or river canyons due to uplift and higher ancient sea levels.

In studying the fossil reefs, the researchers uncovered a striking difference between modern and Pliocene coral communities. The Pliocene epoch was characterized by a great diversity of free-living corals. Unlike most reef corals, these corals lived unattached to the sea floor. Free-living corals were well suited to warm, nutrient-rich seas of the Pliocene. Between eight and four million years ago the origination of new free-living coral species approximately doubled that of other corals. However, free-living corals experienced abrupt extinction as seawater cooled, nutrient levels decreased, and suitable habitat was eliminated in the Caribbean. Of the 26 species of free-living corals that existed during the Pliocene, only two remain in the Caribbean today. The modern Caribbean coral fauna is comprised of those coral species that survived this extinction event.

The scientists argue that the effects of ongoing climate change are reminiscent of conditions present during the Pliocene and opposite to the environmental factors that caused the extinction and gave rise to modern Caribbean corals. So, how might the Caribbean coral fauna respond to a predicted return to Pliocene–like conditions within this century? The free-living corals of the Pliocene would have been well suited to ocean conditions projected for this century. However, the modern reef-building coral fauna may not, explains Donald McNeill, senior scientist in the Division of Marine Geology and Geophysics at UM and co-author of the study.

"Like the Pliocene, we might expect shallow reefs to be increasingly patchy with lower topographic relief," says McNeill. "Rising levels of carbon dioxide will lower the pH in the oceans, a process known as ocean acidification, and will make it difficult for corals to build their limestone skeletons."

Climate change may also increase nutrients in the oceans, boosting populations of marine life that degrade the coral into fine white sand, a process called bioerosion. Reefs built by corals in areas with high bioerosion will be affected the most. Mesophotic reefs, those growing in depths between 30 and 150 meters, have reduced rates of both calcification and bioerosion and thus may be affected less.

The study is funded by the U.S. National Science Foundation. Other authors are Dr. Scott Ishman, Professor, and Brendan Lutz, doctoral student, at Southern Illinois University; Dr. Ann Budd, Professor at the University of Iowa, and Kenneth Johnson, Researcher at the Natural History Museum, London.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world.

Catharine Skipp | EurekAlert!
Further information:
http://www.miami.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>