Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient 'missing' ice may have formed on West Antarctica

26.08.2009
West Antarctica was higher and larger 34 million years ago than previously thought, making it a possible site for ice that seemed to be missing during a key climate transition, scientists report. This finding, which has important implications for climate change, is published today in Geophysical Research Letters, a journal of the American Geophysical Union (AGU).

"Using data from prior geological studies, we have constructed a model for the topography of West Antarctic bedrock at the time of the start of the global climate transition from warm 'greenhouse' Earth to the current cool 'icehouse' Earth some 34 million years ago," explains Douglas S. Wilson of the University of California at Santa Barbara (UCSB), first author of the new work.

He and his UCSB co-author Bruce Luyendyk conclude that, contrary to most current models for bedrock elevations of West Antarctica, the region's bedrock in the past was at much higher elevation and covered a much larger area than today. Those models assume that an archipelago of large islands existed under the ice at the start of the climate transition, similar to today, but Wilson and Luyendyk find that does not fit their new model. In fact, the authors state that the land area above sea level of West Antarctica was about 25 percent greater in the past.

In the existing theory, the low elevation of West Antarctica relegates it to a minor role in the ice accumulation that began 34 million years ago; ice sheets grew on the higher and larger East Antarctic subcontinent. West Antarctica only joined the process around 14 million years ago.

"But a problem exists with leaving West Antarctica out of the early ice history," says Wilson. "From other evidence, it is believed that the amount of ice that grew on Earth at the 34 million year climate transition was too large to be accounted for by formation on East Antarctica alone, the most obvious location for ice sheet growth. Another site is needed to host the extra missing ice."

Evidence for that large mass of ice comes from two sources: One is geologic records of lowered sea level at the time, which indicate how much ice formed on land to produce the sea-level drop. The other is shells of marine microfossils which have chemical and isotopic compositions that are sensitive to ocean temperatures and to the amount of ice on land.

By showing that West Antarctica had a higher elevation 34 million years ago than previously thought, the new study reveals a possible site for the accumulation of the early ice that had been unaccounted for. Moreover, "preliminary climate modeling by researchers at Pennsylvania State University demonstrates that this new model of higher elevation West Antarctica bedrock topography can indeed host the missing ice," says Luyendyk.

"Our results, therefore, have opened up a new paradigm for the history of the growth of the great global ice sheets. Both East and West Antarctica hosted the growing ice," he adds.

The new hypothesis may solve another conflict among climate scientists. Given that more ice grew than could be hosted on East Antarctica alone, some researchers have proposed that the missing ice formed in the northern hemisphere. This would have been many millions of years before the well-known documentation of ice growth there, which started about 3 million years ago; evidence for ice sheets in the northern hemisphere prior to that time is not established. The new bedrock model shows it is not necessary to have ice hosted in the northern polar regions at the start of global climate transition; West Antarctica could have accommodated the extra ice.

The National Science Foundation's Office of Polar Programs funded this research.

Title:
"West Antarctic paleotopography estimated at the Eocene-Oligocene climate transition"
Citation:
Wilson, D. S., and B. P. Luyendyk (2009),West Antarctic paleotopography estimated at the Eocene-Oligocene climate transition, Geophys. Res. Lett., 36, L16302, doi:10.1029/2009GL039297.
Authors:
Douglas S. Wilson: Marine Science Institute and Department of Earth Science, University of California, Santa Barbara, California, USA.

Bruce P. Luyendyk: Department of Earth Science and Institute for Crustal Studies, University of California, Santa Barbara, California, USA.

Contact information for authors:
Douglas Wilson, Associate Research Geophysicist, Department of Earth Science and Marine Science Institute, Tel: +1 (805) 450-0025, email:

dwilson@geol.ucsb.edu

Bruce Luyendyk, Professor, Department of Earth Science, Tel: +1 (805) 893-405,
email: luyendyk@geol.ucsb.edu

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>