Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Analysis Shows Massive South American Ice Field Is Melting Faster

07.09.2012
A little-studied mass of ice in South America is undergoing some big changes: The Southern Patagonian Ice Field lost ice volume at a 50 percent faster rate between 2000-12 than it did between 1975-2000, according to new analysis of digital elevation models performed by Cornell University researchers.

The researchers from Cornell’s Department of Earth and Atmospheric Sciences developed a new way of using digital topography maps obtained from a stereo camera on a NASA satellite to draw their conclusions. Their study has been accepted for publication in the journal Geophysical Research Letters, published by the American Geophysical Union.

Between 2000 and 2012, they said, the ice field, which is about three times the size of Rhode Island and is located in the southern Patagonia Andes of Chile and Argentina, was rapidly losing volume at many of its largest outlet glaciers. In most cases, the thinning extended to the highest elevations of the ice field. Overall, the ice field is showing significant mass loss – about 1.5 times the loss rate recorded between 1975 and 2000 in previous studies.

“Some glaciers aren’t doing very much, while some are thinning and losing volume very quickly – even spectacularly,” said research associate Michael Willis, the paper’s first author.

The team composed of Willis, graduate student Andrew Melkonian, associate professor Matthew Pritchard and Andres Rivera of the University of Chile made a time series map from 156 elevation models of the area. They used NASA’s Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which is a cooperative Japanese and NASA imaging instrument onboard Terra, the flagship satellite of NASA’s Earth Observing System.

The researchers stacked more than 100 of the digital maps, Willis explained, so that a time-stamped pixel on one map is at the same place as a time-stamped pixel on a second map, and so on, like a pile of perfectly aligned pancakes, oldest on the bottom. At any particular place, there is a time series of ice topography changes coded by color.

The results from the technique can be most closely compared to measurements taken by NASA’s Gravity Recovery Climate Experiments (GRACE), conducted by a pair of twin satellites launched in 2002 that track mass gained and lost on and beneath the Earth’s surface.

GRACE has good temporal resolution but much poorer spatial resolution than the Cornell researchers’ ASTER maps. For example, GRACE does not show individual glaciers on its maps, and the GRACE signal does not separate out other factors like the water table filling up or the ground elevation lifting.

The Cornell analysis better isolates the ice field changes only, Melkonian said. “While it’s not directly measuring mass, it is isolating the ice field signal, and by making some assumptions about what the density is, we can say how much mass these ice fields are actually losing,” he said.

Though it’s not nearly as studied as Greenland and Antarctica, the Southern Patagonian Ice Field is the world’s second-largest temperate (not frozen all the way through) ice field. The researchers call Patagonia a “poster child” for rapidly changing glacier systems, so studying them could be key to learning how melting cycles work and how they may be affected by climate change. Pritchard said the next step is ground-based measurements to determine the reasons behind the apparent rapid mass loss.

The research was supported by NASA through the Science Mission Directorate’s Earth Science Division.

John Carberry | Newswise Science News
Further information:
http://www.cornell.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>