Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis of past glacial melting shows potential for increased Greenland ice melt and sea level rise

03.09.2008
Researchers have yet to reach a consensus on how much and how quickly melting of the Greenland Ice Sheet will contribute to sea level rise.

To shed light on this question, scientists at the University of Wisconsin and Columbia University's Center for Climate Systems Research analyzed the disappearance of the Laurentide Ice Sheet, the last ice sheet to melt completely in the Northern Hemisphere and the closest example of what can be expected to happen to the Greenland Ice Sheet in the next century. Their findings show that sea level rise as a result of ice sheet melt can happen very rapidly. The study will be published online this week in Nature Geoscience.

"We have never seen an ice sheet retreat significantly or even disappear before, yet this may happen for the Greenland Ice Sheet in the coming centuries to millennia," said Anders Carlson, the study's lead author and assistant professor of geology and geophysics at the University of Wisconsin-Madison. "What we don't know is the rate of melting of the Greenland Ice Sheet. The geologic data we compiled on the retreat history of the Laurentide Ice Sheet, however, gives us a window into how fast these large blocks of ice can melt and raise sea level."

There are two challenges to determining the rate of melt for the Greenland Ice Sheet—a terrestrial ice mass covering more than 1.7 million km². The current rate of sea level rise is ~ 3 mm/year. In its Fourth Assessment Report, the Intergovernmental Panel on Climate Change (IPCC) indicated up to 59 cm of sea level rise, and stated that, if the observed contributions from the Greenland and Antarctic Ice Sheets between 1992 and 2003 were to increase in direct parallel with global average temperature change, the upper ranges of sea-level rise would increase by 10 to 20 cm. This prediction, however, is based on data collected in a very short period of time—mostly from the last decade—and is not enough to give a clearer idea about what might happen to the Greenland Ice Sheet.

The second challenge is that ice sheet modeling is still in its infancy, owing in part to the lack of observations of ice sheet decay, and therefore cannot accurately depict projected melt. To overcome these challenges, this study took a different approach to examining the potential for future changes to Greenland by exploring the last example of an ice sheet disappearance 9,000 years ago.

Analyzing geologic data and computer models, the team of researchers used terrestrial and marine records to reconstruct the demise of the Laurentide Ice Sheet, a land-based ice mass that covered much of North America, until its ultimate disappearance at around 6,500 years ago. The ice sheet, which once covered most of Canada and the upper reaches of the United States, had two intervals of rapid melting, the first around 9,000 years ago, and the second 7,500 years ago.

The researchers estimate that around the time of the first melting phase, the retreating ice sheet led to about approximately 7 meters of sea level rise at about 1.3 cm a year. The second phase accounts for around 5 meters of sea level rise at about 1.0 cm a year. These rates are comparable to evidence for global sea level rise for this interval derived from coral records.

"I was surprised to see that the model—in agreement with Anders' data—showed the Laurentide Ice Sheet disappearing at 2.7 m/year," said Allegra LeGrande, who led the computer modeling portion of this study and is a postdoctoral research scientist at the NASA Goddard Institute for Space Studies and the Center for Climate Systems Research at Columbia University. "This finding shows the potential for ice to disappear quickly, given the right push."

The simulations of the Laurentide rapid melting episode show that the driving factors for the thinning of the ice sheet were increased solar radiation caused by a change in the earth's orbit which increased summer temperatures. Similar temperature increases may occur over Greenland by the end of this century.

IPCC predictions for changes in sea level for the next century are mainly based on the expansion of the oceans through warming, accounting less for contributions from ice sheet melt. This analysis of the Laurentide Ice sheet finds that the ice sheet 9,000 years ago was under similar pressure to melt as the Greenland Ice Sheet will be by the year 2100, implying a greater potential for mass loss on Greenland and resulting sea level rise. (Although this finding should not be extrapolated for an absolute prediction in sea level rise over the next ten years.)

"The word 'glacial' used to imply that something was very slow," said LeGrande. "This new evidence compiled from the past paired with our model for predicting future climate indicates that 'glacial' is anything but slow. Past ice sheets responded quickly to a changing climate, hinting at the potential for a similar response in the future."

In an accompanying News and Views letter in Nature Geoscience, Mark Siddall, a researcher at Columbia's Lamont-Doherty Earth Observatory, writes "Carlson and colleagues… show that the decay of the Laurentide ice sheet in the early Holocene was extremely fast during the periods they consider … Their work suggests that, in principle, future melt rates on the order of one metre per century are certainly not out of the question."

Clare Oh | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>