Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis of Marcellus flowback finds high levels of ancient brines

19.12.2012
Brine water that flows back from gas wells in the Marcellus Shale region after hydraulic fracturing is many times more salty than seawater, with high contents of various elements, including radium and barium. The chemistry is consistent with brines formed during the Paleozoic era, a study by an undergraduate student and two professors in Penn State's Department of Geosciences found.

The study indicates that the brine flowback elements found in high levels in the late stages of hydraulic fracturing come from the ancient brines rather than from salts dissolved by the water and chemicals used as part of the fracking process.

The paper by Lara O. Haluszczak, a Penn State student who has since graduated; professor emeritus Arthur W. Rose; and Lee R. Kump, professor and head of the Department of Geosciences, detailing those findings has been accepted for publication in Applied Geochemistry, the journal of the International Association of Geochemistry, and is available online.

For the study, the researchers analyzed data primarily from four sources: a report on brines from 40 conventional oil and gas wells in Pennsylvania; data on flowback waters from 22 Marcellus gas wells in Pennsylvania that the state Bureau of Oil and Gas Management had collected; flowback waters from two Marcellus gas wells from a previous study; and an industry study by the Marcellus Shale Coalition on flowback samples from eight horizontal wells that was reported in a Gas Technology Institute report.

Hydraulic fracturing, or fracking, is the process used to release natural gas from the shale formations deep underground. The process involves drilling down thousands of feet and, in the case of horizontal wells, sideways, then injecting a mixture of water, sand and chemicals to release the gas. The paper notes that about a quarter of the volume of fluid used for fracking returns to the surface, but with the brine as a major component.

The paper looked at fluids that flowed back within 90 days of fracking. The samples analyzed in the study come from wells in Pennsylvania, along with two from northern Virginia.

The analysis shows that the brine flowback had extremely high salinity that does not match the chemical composition of the solution put into the wells during the fracking process. Instead, the elements being released are similar to those deposited during the Paleozoic era, hundreds of millions of years ago.

Rose said the naturally occurring radioactive materials being brought to the surface after having been 8,000 feet deep were deposited with formations in that era. He noted that while much attention has been focused on the chemicals that are injected into the shale formation during the fracking process, also of concern is the release of elements such as barium and radium that have been in the ground for millions of years.

"Even if it's diluted quite a bit, it's still going to be above the drinking water limits," Rose said. "There's been very little research into this." Pennsylvania does have regulations on the disposal of fracking fluids. Rose said the findings highlight the importance of re-use and proper disposal of fracking fluids, including those from the later stages of drilling.

"Improper disposal of the flowback can lead to unsafe levels of these and other constituents in water, biota and sediment from wells and streams," the researchers noted.

"The high salinity and toxicity of these waters must be a key criterion in the technology for disposal of both the flowback waters and the continuing outflow of the production waters," the paper concludes.

Anne Danahy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>