Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis exposes faster disintegration of major Greenland glacier

13.11.2015

A study appearing in Science magazine today shows a vast ice sheet in northeast Greenland has begun a phase of speeded-up ice loss, contributing to destabilization that will cause global sea-level rise for "decades to come."

A team of scientists, including a researcher from the University of Kansas-based Center for Remote Sensing of Ice Sheets (CReSIS), found that since 2012 warmer air and sea temperatures have caused the Zachariæ Isstrøm ice sheet to "retreat rapidly along a downward-sloping, marine-based bed."


This is radar depth-sounder data from before and after the breakup of the Zachariæ Isstrøm ice shelf. The green line reveals the ice bottom, and loss of ice between 1999-2014. The white line represents hydrostatic equilibrium estimates of the ice bottom.

Credit: KU News Service | University of Kansas

By itself, the Zachariæ Isstrøm glacier holds enough water to trigger a half-meter rise in ocean levels around the world.

"The acceleration rate of its ice velocity tripled, melting of its residual ice shelf and thinning of its grounded portion doubled, and calving is occurring at its grounding line," the authors wrote.

"Ice loss is happening fast in glaciological terms, but slow in human terms -- not all in one day or one year," said John Paden, associate scientist for CReSIS and courtesy associate professor of electrical engineering and computer science at KU, who helped analyze data about the thickness of the glacier's ice for the study.

Paden's collaborators include J. Mouginot, E. Rignot, B. Scheuchl, M. Morlighem and A. Buzzi from the University of California Irvine, along with I. Fenty and A. Khazendar of the California Institute of Technology.

"Within a few generations, ice loss could make a substantial difference in sea levels," Paden said. "When you add up all the glaciers that are retreating, it will make a difference to a large number of people. Sea level has increased some over the last century, but only a small number of people have been affected compared to what is likely to come."

Paden crunched data acquired by CReSIS during NASA's Operation IceBridge and previous NASA flights over Greenland, including decades-old measurements of Zachariæ Isstrøm. The sensor development and data processing tools used to do this were funded through National Science Foundation and NASA grants, with the support of many CReSIS collaborators.

"There are several other sources of data, but one of them is the Landsat satellite imagery that goes back to 1975," Paden said. "With that, you can look at what the ice shelf is doing, how it's shrinking over time. Satellite optical and radar imagery were used to measure surface-velocity changes over time and to measure the position of the grounding line based on tidal changes."

Paden said the "grounding line," or the boundary between land and sea underneath a glacier, is a zone of special interest.

"The grounding line is where the ice sheet starts to float and is where the ice flux was measured," Paden said. "The grounding line is a good place to determine thickness across the ice. The terminus of Zachariæ Isstrøm is now at the grounding line -- the ocean is right up against the grounded part of the glacier."

While air temperatures have warmed, causing boosted surface runoff, Paden said ice loss from calving off the front of the glacier into the ocean accounts for most of the ice mass reduction from Zachariæ Isstrøm.

"Ice floating out into the ocean and melting is greater than the ice lost from surface melting," he said.

A neighboring glacier with an equal amount of ice, named Nioghalvfjersfjorden, is also melting fast but receding gradually along an uphill bed, according to the researchers. Because Zachariæ Isstrøm is on a downslope, it's disappearing faster.

"The downward slope combined with warming ocean temperatures is what seems to be causing the acceleration now and why we predict it will continue to accelerate over the next few decades," Paden said. "Until its grounding line is pinned on an upslope bed, then the dynamic effect is expected to decrease."

Together, the ice in Zachariæ Isstrøm and Nioghalvfjersfjorden represent a 1.1-meter rise in sea levels worldwide. According to the KU researcher, the team's work is intended to inform people in coastal areas who need to make choices about the future.

"From a societal standpoint, the reason why there's so much focus on ice sheets is because predicted sea level rise will affect nearly every coastal country -- the United States for sure, and low-lying countries with limited resources are likely to be the worst off. Mass displacements of potentially millions of people will affect countries that have no coastlines. We study this to have an understanding of how soon things are likely to happen and to help us use our limited resources mitigate the problem."

Media Contact

Brendan M. Lynch
brendan@ku.edu
785-864-8855

 @KUNews

http://www.news.ku.edu 

Brendan M. Lynch | EurekAlert!

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>