Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amount of dust blown across the West is increasing, says CU-Boulder study

11.06.2013
The amount of dust being blown across the landscape has increased over the last 17 years in large swaths of the West, according to a new study led by the University of Colorado Boulder.

The escalation in dust emissions — which may be due to the interplay of several factors, including increased windstorm frequency, drought cycles and changing land-use patterns — has implications both for the areas where the dust is first picked up by the winds and for the places where the dust is put back down.


This image shows a dust storm in Canyonlands National Park.

Credit: Jason Neff

"Dust storms cause a large-scale reorganization of nutrients on the surface of the Earth," said Janice Brahney, who led the study as a CU-Boulder doctoral student. "And we don't routinely monitor dust in most places, which means we don't have a good handle on how the material is moving, when it's moving and where it's going."

Based on anecdotal evidence, such as incidents of dust coating the snowpack in the southern Rockies and a seemingly greater number of dust storms noticed by Western residents, scientists have suspected that dust emissions were increasing. But because dust has not been routinely measured over long periods of time, it was difficult to say for sure.

"What we know is that there are a lot of dust storms, and if you ask people on the Western Slope of Colorado, or in Utah or Arizona, you'll often hear them say, 'Yeah, I grew up in this area, and I don't remember it ever being like this before,'" said CU-Boulder geological sciences Associate Professor Jason Neff, Brahney's adviser and a co-author of the paper. "So there is anecdotal evidence out there that things are changing, but no scientific data that can tell us whether or not that's true, at least for the recent past."

For the new study, recently published online in the journal Aeolian Research, the research team set out to determine if they could use calcium deposition as a proxy for dust measurements. Calcium can make its way into the atmosphere — before falling back to earth along with precipitation — through a number of avenues, including coal-fired power plants, forest fires, ocean spray and, key to this study, wind erosion of soils.

The amount of calcium dissolved in precipitation has long been measured by the National Atmospheric Deposition Program, or NADP, which first began recording the chemicals dissolved in precipitation in the late 1970s to better understand the phenomena of acid rain.

Brahney and her colleagues reviewed calcium deposition data from 175 NADP sites across the United States between 1994 and 2010, and they found that calcium deposition had increased at 116 of them. The sites with the greatest increases were clustered in the Northwest, the Midwest and the Intermountain West, with Colorado, Wyoming and Utah seeing especially large increases.

The scientists were able to determine that the increase was linked to dust erosion because none of the other possible sources of atmospheric calcium — including industrial emissions, forest fires or ocean spray — had increased during the 17-year period studied.

It's also likely that the calcium deposition record underrepresents the amount of dust that's being blown around, said Brahney, who is now a postdoctoral researcher at the University of British Columbia in Canada. That's because the NADP network only measures dust that has collided with water in the atmosphere before precipitating to earth — not dust that is simply moved by the wind. And not all dust contains the same amount of calcium.

The increase in dust erosion matters, the researchers said, because it can impoverish the soil in the areas where dust is being lost. Wind tends to pick up the finer particles in the soils, and those are the same particles that have the most nutrients and can hold onto the most soil moisture, Brahney said.

Increasing amounts of dust in the atmosphere also can cause people living in the rural West a variety of problems, including poor air quality and low visibility. In extreme cases, dust storms have shut down freeways, creating problems for travelers.

The areas where the dust travels to are also affected, though the impacts are more mixed. When dust is blown onto an existing snowpack, as is often the case in the Rockies, the dark particles better absorb the sun's energy and cause the snowpack to melt more quickly. But the dust that's blown in also brings nutrients to alpine areas, and the calcium in dust can buffer the effects of acid rain.

In the future, researchers working in Neff's lab hope to get a more precise picture of dust movement by measuring the dust itself. In the last five years, large vacuum-like measuring instruments designed specifically to suck in dust emissions have been installed at sites between the canyon lands of Utah and the Front Range of the Rockies. Once scientists have enough data collected, they'll be able to look for trends in dust emissions without relying on proxies.

The study was funded by the National Science Foundation.

Jason Neff | EurekAlert!
Further information:
http://www.colorado.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>