Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alpine rivers hold important clues for preserving biodiversity and coping with climate change

18.11.2008
Marginal plants, particularly trees, play a crucial role in sustaining the biodiversity of Europe's big river systems, according to a recently held workshop organised by the European Science Foundation (ESF).

This finding provides important clues for protecting Europe's rivers against a combined onslaught from human development and climate change, which are tampering with existing ecosystems and changing both the physical and biological forces acting upon them.

Both aquatic plants (living in rivers) and, more importantly, riparian ones (growing along the banks and on islands) play critical roles in building and sustaining habitats for colonisation by other species, and in the chemical and biochemical processes that keep rivers and their ecosystems healthy, according to Professor Angela Gurnell, convenor of the ESF workshop and director of the Centre for Environmental Assessment, Management and Policy at King's College, London.

Gurnell described some plant species as "ecosystem engineers" marshalling habitat development and maintenance. Furthermore, ecosystem engineering by plants operates at many different spatial scales, and in different ways along rivers from their source to mouth. But the vegetation itself is part of the habitat it supports and so vulnerable to the same forces, with the potential for tipping whole ecosystems into new states when certain thresholds are breached, for example as a result of a slight change in climate or river flows.

"Vegetation-physical process interactions are highly complex and are subject to distinct thresholds across which massive shifts in system condition can occur," said Gurnell. "Threshold crossing can be driven by both physical and biological processes and is particularly susceptible to changes in climate, river flow and channel management."

The ESF workshop focused on Alpine systems because most of Europe's largest rivers, including the Rhine, Rhone and Danube have their source in the Alps. Alpine rivers receive a significant part of their flow from snow and ice melt and so are particularly sensitive to climate change, but these rivers also embrace ecosystems and conditions that are found widely in other European rivers.

The ESF workshop heralded an important step forward for the field of modelling the complex physical and chemical processes of river ecosystems, by taking account of the vegetation's role not just as a guardian of habitats but also in modulating water flow and sediment movements. A full understanding of river habitats therefore requires these effects to be incorporated in the models used to analyse them and predict response to forcing factors such as climate change.

"Complex river channel patterns, including a wide variety of vegetated and unvegetated landforms, induce complex flow patterns at the surface and subsurface driving a range of hydraulic 'patches', which change their hydraulic properties and also connect and disconnect at different flow stages," said Gurnell.. "It is crucial to develop models that represent this hydraulic patchiness and its dynamics under changing river levels, whether through detailed numerical approaches or more aggregated statistical approaches, because these make it possible to define the range of hydraulic conditions available to aquatic organisms within different river settings."

Rivers and their ecosystems, apart from being crucial for human survival in many parts of the world, also make fascinating studies in their own right. Rivers are connected systems, not only because water, sediment and organisms move between upstream and downstream reaches, but also because the faster flowing and deeper middle of the river is linked to the edges where the water may move quite slowly, and also to flood plains during flood events. An important aspect of river modelling therefore lies in defining the major associations between physical patterns of flow, sediment and landforms, how organisms and ecosystems relate to them, and how both may change when threshold conditions are reached. Achieving this in turn relies on synergy between numerical models and experiments or observations both in the laboratory and in the field.

A major objective is then to apply this work firstly to develop tools that can help to identify the best ways of managing rivers. "Colleagues in mainland Europe have been developing ideas of 'channel-widening' with managers, whereby the river is given more space to adjust its morphology (structure) in a dynamic way within reaches where space can be made available for this," said Gurnell. The idea here is to reconnect river ecosystems with the banks and even floodplains in cases where space is available but past management has severed such links. However, it is also important that river flows can sustain the widening and that this process is applied at different sites along rivers to maintain upstream to downstream connections between affected sites if sustainable benefits to the river ecosystem are to be achieved.

Thomas Lau | alfa
Further information:
http://www.esf.org
http://www.esf.org/activities/exploratory-workshops/workshops-list/workshops-detail.html?ew=6512

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

New study maps space dust in 3-D

23.03.2017 | Physics and Astronomy

Tracing aromatic molecules in the early universe

23.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>