Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Albedo effect” in forests can cause added warming, bonus cooling

20.10.2011
Wildfire, insect outbreaks and hurricanes destroy huge amounts of forest every year and increase the amount of carbon dioxide entering the atmosphere, but scientists are now learning more about another force that can significantly affect their climate impact.

Researchers conclude in a new study that the albedo effect, which controls the amount of energy reflected back into space, is important in the climatic significance of several types of major forest disturbances.

In some cases – mostly in boreal forests with significant snow cover – increases in reflectivity can provide cooling. If the area disturbed by fire or insects is large, this cooling can substantially offset the increase in global warming that would otherwise be caused by these forest disturbances and the release of greenhouse gases. In other cases where the ground itself is unusually dark, albedo decreases can magnify concerns about warming.

Wildfires are not the only disturbance that significantly alters surface albedo, this study concluded. Insect outbreaks and defoliation by hurricanes can also change surface reflectivity, with effects on climate as great as those caused by carbon dioxide release from the disturbed area.

“On a global scale, warming caused by increased carbon dioxide still trumps everything else,” said Beverly Law, a professor in the Department of Forest Ecosystems and Society at Oregon State University. “On a smaller or local scale, however, changes in albedo can be fairly important, especially in areas with significant amounts of snow, such as high latitudes or higher elevations.”

Albedo is a measure of radiation reflected by a surface, in this case the surface of the planet. Lighter colors such as snow reflect more light and heat back into space than the dark colors of a full forest and tree canopy.

“This decreased absorption of heat by the land surface is a local atmospheric cooling effect,” said Tom O’Halloran, a recent postdoctoral research at OSU who is now with the Department of Environmental Studies at Sweet Briar College. “This was clear in one case we studied of trees killed by mountain pine beetles in British Columbia.

“In areas with substantial snow cover, we found that canopy removal due to either fire or insect attack increased reflected radiation and approximately offset the warming that would be caused by increased release of carbon dioxide,” O’Halloran said. “However, we haven’t been able to measure the full impact from the current beetle outbreak, which could take decades to complete.”

This complex phenomenon would be much less in lower latitudes or areas without snow for much of the year, the researchers said. It relates primarily to boreal or colder mid-latitude forests, such as the Canadian insect outbreak over 374,000 square kilometers of forest.

“The impacts of insects on forest carbon dynamics and resulting changes in albedo are generally ignored in large-scale modeling,” Law said.

The study also found that forest disturbance does not always cause an albedo increase. When Hurricane Wilma in 2005 partially defoliated more than 2,400 square kilometers of a mangrove forest in the Florida Everglades, it exposed an underlying land surface darker than the previous forest canopy. In that case, an albedo decrease effectively doubled the warming impact of released carbon dioxide.

All of the forces studied in this research – fire, insect attack and hurricanes – are expected to increase in severity, frequency or extent under climate change scenarios, the scientists said. In the United States alone, these events affect 20,000 to 40,000 square kilometers of forest a year. If Earth system models are to be accurate, this makes it important to more accurately incorporate changes in albedo.

Globally, forest disturbances are a major factor in the carbon cycle and greenhouse gas warming. They can instantly switch forests from carbon sinks into carbon sources for two decades or more. In cold regions where forest recovery is slower, albedo increases can persist for 100 years.

This research was published in Global Change Biology, a professional journal. It was supported by the U.S. Department of Energy, and used data from both the AmeriFlux Network and NASA MODIS sensor on the Terra satellite.

About the OSU College of Forestry: For a century, the College of Forestry has been a world class center of teaching, learning and research. It offers graduate and undergraduate degree programs in sustaining ecosystems, managing forests and manufacturing wood products; conducts basic and applied research on the nature and use of forests; and operates 14,000 acres of college forests.

Media Contact
David Stauth,
541-737-0787
Source
Beverly Law, 541-737-6111

Beverly Law | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>